Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T07:10:47.307Z Has data issue: false hasContentIssue false

Effects of Strain-Induced Defects on Excess Carrier Lifetime and Ambipolar Diffusion in nipi-Doped In0.2Ga0.8As/GaAs Mqws

Published online by Cambridge University Press:  15 February 2011

H.T. Lin
Affiliation:
Department of Materials Science & Engineering, University of Southern California, Los Angeles, CA 90089-0241
D.H. Rich
Affiliation:
Department of Materials Science & Engineering, University of Southern California, Los Angeles, CA 90089-0241
A. Larsson
Affiliation:
Department of Optoelectronics and Electrical Measurements, Chalmers University of Technology, S-412 96 Göteborg, Sweden
Get access

Abstract

The effects of strain-induced defects on excess carrier lifetime and transport in a nipi-doped In0.2Ga0.8As/GaAs multiple quantum well (MQW) structure were examined with a new method called electron beam-induced absorption modulation (EBIA) in which the kinetics of carrier transport and recombination are examined with a high-spatial, -spectral and -temporal resolution. The excess carrier lifetime and ambipolar diffusion were found to be reduced by factors of ∼1013 and ∼103 compared to theoretical values, respectively, and this is attributed to the presence of strain-induced defects. The MQW excitonic absorption coefficient sensitively depends on the carrier density in the QWs, as a result of screening of the electron-hole (e-h) Coulombic interaction. Likewise, ambipolar diffusion is found to depend on the excess carrier density in a nonlinear fashion, as a result of the e-h plasma-induced changes in the local depletion widths in the vicinity of structural defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maserjian, J., Andersson, P.O., Hancock, B.R., lannelli, J.M., Eng, S.T., Grunthaner, F.J., Law, K.-K., Holtz, P.O., Simes, R.J., Coldren, L.A., Gossard, A. C., and Merz, J.L., Appl. Opt. 28, 4801 (1989).Google Scholar
2. Gulden, K.H., Lin, H., Kiesel, P., Riel, P., Döhler, G.H., and Ebeling, K.J., Phys. Rev. Lett. 66, 373 (1991).Google Scholar
3. Dihler, G.H., IEEE J. Quantum Electron. QE–22, 1682 (1986); J. Vac. Sci. Technol. B 1, 278 (1983).Google Scholar
4. Kost, A., West, L., Hasenberg, T.C., White, J.O., Matloubian, M., and Valley, G.C., Appl. Phys. Lett. 63, 34943496 (1993).Google Scholar
5. Delgado, G., Johansson, J., Larsson, A., and Andersson, T., Optically controlled spatial modulation of (sub-) millimeter waves using nipi-doped semiconductors, 1994 (unpublished).Google Scholar
6. Rich, D.H., Rajkumar, K.C., Chen, L., Madhukar, A., George, T., Maserjian, J., Grunthaner, F.J., and Larsson, A., J. Vac. Sci. Technol. B 10, 1965 (1992).Google Scholar
7. Rich, D.H., Rammohan, K., Tang, Y., Lin, H.T., Maserjian, J., Grunthaner, F.J., Larsson, A., and Borenstain, S.I., Appl. Phys. Lett. 63, 394 (1993); J. Vac. Sci. Technol. B 11, 1717 (1993); Appl. Phys. Lett. 64, 730 (1994).Google Scholar
8. Park, S.H., Morhange, J.F., Jeffery, A.D., Morgan, R.A., Chavez-Pirson, A., Gibbs, H.M., Koch, S.W., Peyghambarian, N., Derstine, M., Gossard, A.C., English, J.H., and Weigmann, W., Appl. Phys. Lett. 52, 1201 (1988).Google Scholar
9. Chemla, D.S., Miller, D.A.B., Smith, P.W., Gossard, A.C., and Wiegmann, W., IEEE J. Quantum Electron. QE–20, 265 (1984).Google Scholar
10. Kawase, M., Garmire, E., Lee, H.C., and Dapkus, P.D., IEEE J. Quantum Electron. QE–30, 981 (1994).Google Scholar
11. Everhart, T.E. and Hoff, P.H., J. Appl. Phys. 42, 5837 (1971).Google Scholar
12. lannelli, J.M., Maserjian, J., Hancock, B.R., Andersson, P.O., and Grunthaner, F.J., Appl. Phys. Lett. 54, 301 (1989).Google Scholar
13. Rich, D.H., Lin, H.T., and Larsson, A., J. Appl. Phys, in press.Google Scholar
14. Jonsson, B., Larsson, A.G., Sjölund, O., Wang, S., Andersson, T.G., and Maserjian, J., IEEE J. Quantum Electron. QE–30, 63 (1994).Google Scholar
15. Gulden, K.H., Lin, H., Kiesel, P., Riel, P., Döhler, G.H., Ebeling, K.J., Phys. Rev. Lett. 66, 373 (1991).Google Scholar
16. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 29.Google Scholar