Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T06:30:58.930Z Has data issue: false hasContentIssue false

Effects of Si-doping on the Microstructure of AlGaN/GaN Multiple-quantum-well

Published online by Cambridge University Press:  01 February 2011

R. Liu
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
F. A. Ponce
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
S-L. Sahonta
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
D. Cherns
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
H. Amano
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468, Japan
I. Akasaki
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468, Japan
Get access

Abstract

The effects of silicon-doping on the microstructure of Al0.07Ga0.93N/GaN multiple-quantum-well (MQW) have been studied by TEM. Significant changes of surface morphology and dislocation core structures have been observed due to Si-doping in the Al0.07Ga0.93N barriers. Threading dislocations create surface pits in the MQW as a result of Si doping. With an increasing doping level, the pits change the shape from small faceted pyramid to large cone. The formation mechanism of the surface pits has been discussed from both dynamics and kinetics points of view. We have also observed nanopipes constrict to form closed core screw dislocations in the MQW due to Si-doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chichibu, S., Shikanai, A., Deguchi, T., Setoguchi, A., Nakai, R., Nakanishi, H., Wada, K., DenBaars, S. P., Sota, T. and Nakamura, S., Jpn. J. Appl. Phys. 39, 2417 (2000).Google Scholar
[2] Monemar, B., Haratizadeh, H., Paskov, P. P., Pozina, G., Holtz, P. O., Bergman, J. P., Kamiyama, S., Iwaya, M., Amano, H., and Akasaki, I., phys. stat. sol. (b) 237, 353 (2003).Google Scholar
[3] Chichibu, S., Cohen, D. A., Mack, M. P., Abare, A. C., Kozodoy, P., Minsky, M., Fleischer, S., Keller, S., Bowers, J. E., Mishra, U. K., Coldren, L. A., Clarke, D. R., and DenBaars, S. P., Appl. Phys. Lett. 73, 469 (1998).Google Scholar
[4] Nakamura, T., Mochizuki, S., Terao, S., Sano, T., Iwaya, M., Kamiyama, S., Amano, H. and Akasaki, I., J. Cryst. Growth 237/239, 1129 (2002).Google Scholar
[5] Sun, C. J., Zubair Anwar, M., Chen, Q., Yang, J. W., Asif Khan, M., Shur, M. S., Bykhovski, A. D., Liliental-Weber, Z., Kisielowski, C., Smith, M., Lin, J. Y., and Xiang, H. X., Appl. Phys. Lett. 70, 2978 (1997).Google Scholar
[6] Wu, X. H., Elsass, C. R., Abare, A., Mack, M., Keller, S., Petroff, P. M., DenBaars, S. P., and Speck, J. S. and Rosner, S. J., Appl. Phys. Lett. 72, 692 (1998).Google Scholar
[7] Lin, Y-S, Ma, K-J, Hsu, C., Feng, S-W, Cheng, Y-C, Liao, C-C, Yang, C. C., Chou, C-C, Lee, C-M, and Chyi, J-I, Appl. Phys. Lett. 77, 2988 (2000).Google Scholar
[8] Northrup, J. E., Romano, L. T. and Neugebauer, J., Appl. Phys. Lett. 74, 2319 (1999).Google Scholar
[9] Elsner, J., Jones, R., Sitch, P. K., Porezag, V. D., Elstner, M., Frauenheim, Th., Heggie, M. I., Öberg, S., and Briddon, P. R., Phys. Rev. Lett. 79, 3672 (1997).Google Scholar
[10] Frank, F. C., Acta Crystallogr. 4, 497 (1951).Google Scholar
[11] Romano, L. T., Van de Walle, C. G., Ager, J. W. III, Götz, W. and Kern, R. S., J. Appl. Phys. 87, 7745 (2000).Google Scholar
[12] Keller, S., Mishra, U. K., DenBaars, S. P., and Siefert, W., Jpn. J. Appl. Phys., Part 2 37, L431 (1998).Google Scholar