Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-21T04:22:13.484Z Has data issue: false hasContentIssue false

Effects of Rapid Thermal Anneals on Boron Implanted GaAs

Published online by Cambridge University Press:  26 February 2011

R. C. Bowman Jr
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
P. M. Adams
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
M. H. Herman
Affiliation:
Charles Evans and Associates, 301 Chesapeake Dr., Redwood City, CA 94063
S. E. Buttrill Jr
Affiliation:
Charles Evans and Associates, 301 Chesapeake Dr., Redwood City, CA 94063
Get access

Abstract

Raman scattering, double-crystal x-ray diffraction, and electron beam electroreflectance have been used to assess the damage produced in undoped (100)-GaAs by boron ion implants and the influence of post-implant anneals. Both conventional furnace and rapid thermal annealing treatments were found to remove much of the lattice strain created by the implants. However, considerable disorder also remains after these anneals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C., and Williams, J. S., Nucl. Instrum. Meth. B 19/20, 369 (1987).Google Scholar
2. Bowman, R. C. Jr, and Jamieson, D. N., Symp. Proc. Soc. Photo-Optical Instrum. Eng. 822, 31 (1987).Google Scholar
3. Jamieson, D. N., Bowman, R. C. Jr, Adams, P. M., Knudsen, J. F., and Downing, R. G., Mat. Res. Soc. Symp. Proc. 100, 299 (1988).Google Scholar
4. Bowman, R. C. Jr, Jamieson, D. N., Adams, P. M., and Alt, R. L., Symp. Proc. Soc. Photo-Optical Instrum. Eng. 946, 65 (1988).Google Scholar
5. Bowman, R. C. Jr, Knudsen, J. F., Downing, R. G., and Kremer, R. E., Mat. Res. Soc. Symp. Proc. 126, 89 (1988).Google Scholar
6. Raccah, P. M., Garland, J. W., Butrill, S. E. Jr, Francke, L., and Jackson, J., Appl. Phys. Lett. 52, 1584 (1988).Google Scholar
7. Tiong, K. K., Amirtharaj, P. M., Pollak, F. H., and Aspnes, D. E., Appl. Phys. Lett. 44, 122 (1984).Google Scholar
8. Burns, G., Dacol, F. H., Wie, C. R., Burnstein, E., and Cardona, M., Solid State Commun. 62, 449 (1987).Google Scholar
9. Burns, O., Dacol, F. H., Baglin, J. E. E., Wie, C. R., Burnstein, E., and Cardona, M., Mat. Res. Soc. Symp. Proc. 82, 121 (1987).Google Scholar
10. Wie, C. R., Tombrello, T. A., and Vreeland, T. Jr, Phys. Rev. B 33, 4083 (1986).Google Scholar
11. Paine, B. M., Hurvitz, N. N., and Speriosu, V. S., J. Appl. Phys. 61, 1335 (1987).Google Scholar
12. Dederichs, P. H., J. Phys. F: Met Phys. 3, 471 (1973).Google Scholar
13. Brown, R. L., Schoonveld, L., Abels, L. L., Sundaram, S., and Raccah, P. M., J. Appl. Phys. 52, 2950 (1981).Google Scholar
14. Amirtharaj, P. M., Odell, M. S., Bowman, R. C. Jr, and Alt, R. L., J. Vac. Scien. Technol. A 6, 1421 (1988); P. M. Amirtharaj, R. C. Bowman, Jr., and R. L. Alt, Symp. Proc. Soc. Photo-Optical Instrum. Eng. 946, 57 (1988).Google Scholar
15. Sadana, D. K., Nucl. Instrum. Meth. B 7/8, 375 (1985).Google Scholar