Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T01:57:10.302Z Has data issue: false hasContentIssue false

Effects of Oxygen on Meta-stable Phase Formation in Zr80Pt20 Melt Spun Ribbons

Published online by Cambridge University Press:  01 February 2011

Daniel Sordelet
Affiliation:
Materials and Engineering Physics Program, Ames Laboratory (USDOE), Iowa State University, Ames IA 50011 (USA)
Xiaoyun Yang
Affiliation:
Materials and Engineering Physics Program, Ames Laboratory (USDOE), Iowa State University, Ames IA 50011 (USA)
Elena Rozhkova
Affiliation:
Materials and Engineering Physics Program, Ames Laboratory (USDOE), Iowa State University, Ames IA 50011 (USA)
Matthew Besser
Affiliation:
Materials and Engineering Physics Program, Ames Laboratory (USDOE), Iowa State University, Ames IA 50011 (USA)
Matthew Kramer
Affiliation:
Materials and Engineering Physics Program, Ames Laboratory (USDOE), Iowa State University, Ames IA 50011 (USA)
Get access

Abstract

This report continues previous studies that show melt spun Zr80Pt20 ribbons having oxygen contents ranging from <200 to approximately 5000 mass ppm form various meta-stable phases during quenching. In the presence of sufficient oxygen, a big cube Zr6Pt3O phase forms, but this structure is de-stabilized towards an icosahedral quasicrystalline structure at lower oxygen levels. Further reduction of oxygen promotes increasingly stable Zr-Pt bonds, and a meta-stable β-Zr(Pt) structure is formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Köster, U., Meinhardt, J., Roos, S. and Liebertz, H., Appl. Phys. Lett. 69 (1996), p. 179.Google Scholar
2. Köster, U., Rüdiger, A. and Meinhardt, J., in Proceedings of the 6th International Conference on Quasicrystals, edited by Takeuchi, S. and Fujiwara, T. (World Scientific, Singapore, 1998), p. 317.Google Scholar
3. Altounian, Z., Batalla, E. and Strom-Olsen, J. O., J. Appl. Phys. 61 (1986) 149.Google Scholar
4. Koester, U., Ruediger, A., Meinhardt, J., Mater. Sci. Forum 307 (1999) 9.Google Scholar
5. Koester, U., Meinhardt, J., Ross, S and Ruediger, A., Mater. Sci. Forum 225/227 (1996) 311.Google Scholar
6. Eckert, J., Mattern, N., Zinkevitch, M. and Seidel, M., Mater. Trans. JIM 39 (1998), p. 623.Google Scholar
7. Gebert, A., Eckert, J. and Schultz, L., Acta Mater. 46 (1998), p. 5475.Google Scholar
8. Saida, J., Matsushita, M. and Inoue, A., Mater. Trans. JIM 42 (2001), p. 1103.Google Scholar
9. Köster, U., Zander, D. and Janlewing, R., Mater. Sci. Forum 386–388 (2002), p. 89.Google Scholar
10. Baricco, M., Spriano, S., Chang, I., Petrzhik, M. I. and Battezzati, L., Mater. Sci. Eng. A304–306 (2001) 305.Google Scholar
11. Sordelet, D. J., Yang, X. Y., Rozhkova, E. A., Besser, M. F. and Kramer, M. J., Appl. Phys. Lett. 83 (2003), p. 69.Google Scholar
12. Sordelet, D. J., Yang, X. Y., Rozhkova, E. A., Besser, M. F. and Kramer, M. J., J. Intermetallics (submitted 2003).Google Scholar
13. Yang, X. Y., Kramer, M. J., Rozhkova, E. A. and Sordelet, D. J., Scripta Mater. 49 (2003), p. 885.Google Scholar
14. Murty, B. S., Ping, D. H., Ohnuma, M. and Hono, K., Acta Mater. 49 (2001), p. 3453.Google Scholar
15. Chen, L. and Spaepen, F., Nature (London) 336 (1988) 366.Google Scholar
16. Nenitt, M. V., Trans. Met. Soc. AIME 218 (1960) 327.Google Scholar