Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T00:31:29.266Z Has data issue: false hasContentIssue false

Effects of Nitrogen Reactive Species on Germanium Plasma Nitridation Processes

Published online by Cambridge University Press:  01 February 2011

Takuya Sugawara
Affiliation:
takuyas@stanford.edu, Tokyo Electron America Inc., Technology Development Center, 2953 Bunker Hill Lane, Suite 300, Santa Clara, California, 95054, United States, 408-398-4753
Raghavasimhan Sreenivasan
Affiliation:
raghavs@stanford.edu, Stanford University, Dept. of Materials Science and Engineering, 476 Lomita Mall, McCullough Bldg., Stanford, California, 94305, United States
Paul C. McIntyre
Affiliation:
pcm1@stanford.edu, Stanford University, Dept. of Materials Science and Engineering, 476 Lomita Mall, McCullough Bldg., Stanford, California, 94305, United States
Get access

Abstract

Roles of reactive species of germanium and silicon plasma nitridation were investigated by comparing nitrogen plasma chemistry and oxynitride layer physical properties. In high pressure remote plasma nitridation process, hydrogen containing neutral radicals (NH* and H*) were important to nitride germanium and silicon substrates. This process required high substrate temperature to nitride germanium substrate, whereas silicon substrates could be nitrided at low substrate temperature. In low pressure RLSA plasma nitridation process, N2+ ion species acted as dominant reactive species. Using this process, germanium could be nitrided at low substrate temperature without hydrogen and high nitrogen concentration (~22at.%) GeON was obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chui, C. O., Kim, H., Chi, D., Triplett, B. B., McIntyre, P. C., and Saraswat, K. C., IEEE IEDM 2002, San Francisco, 437, (2002).Google Scholar
2 Sze, S. M., Physics of Semiconductor Devices (Willy, New York, 1981)Google Scholar
3 Prabhakaran, K., Maeda, F., Watanabe, Y., and Ogino, T., Appl. Phys. Lett. 76, 2244 (2000)Google Scholar
4 Prabhakaran, K. and Ogino, T., Surf. Sci. 325, 263 (1995)Google Scholar
5 Prabhakaran, K. and Ogino, T., Surf. Sci. Lett. 387, 1068 (1997)Google Scholar
6 Kim, H., Chui, C. O., Saraswat, K. C., Cho, M-H., and McIntyre, Paul C., Appl. Phys. Lett. 85, 2902 (2004)Google Scholar
7 Niimi, H. and Lucovsky, G., J. Vac. Sci. Technol. A 17, 3185 (1999)Google Scholar
8 Sekine, K., Saito, Y., Hirayama, M., and Ohmi, T., J. Vac. Sci. Technol. A 17, 3129 (1999)Google Scholar
9 Sugawara, T., Matsuyama, S., Sasaki, M., Nakanishi, T., Murakawa, S., Katsuki, J., Ozaki, S., Tada, Y., Ohta, T., and Yamamoto, N., Jpn. J. Appl. Phys., 44, 1232 (2005)Google Scholar
10 Mukhopadhyay, M., Ray, S. K., and Maiti, C. K., J. Vac. Sci. Technol. B 14, 1682 (1996)Google Scholar
11 Aubel, D., Diani, M., Kubler, L., Bischoff, J. L., and Bolmont, D., J. Non-Cryst. Solids 187, 319 (1995)Google Scholar
12 Maeda, T., Yasuda, T., Nishizawa, M., Miyata, N., Morita, Y., and Takagi, S., Appl. Phys. Lett. 85, 3181 (2004)Google Scholar
13 Niimi, H., Khandelwal, A., Lamb, H. H., and Lucovsky, G., J. Appl. Phys. 91, 48 (2002)Google Scholar