Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T05:39:14.531Z Has data issue: false hasContentIssue false

Effects of Nitrogen and Helium Ion Implantation on Uniaxial Tensile Properties of 316 SS Foils

Published online by Cambridge University Press:  25 February 2011

J. A. Spitznagel
Affiliation:
Westinghouse R&D Center, Pittsburgh, PA 15235;
B. O. Hall
Affiliation:
Westinghouse R&D Center, Pittsburgh, PA 15235;
N. J. Doyle
Affiliation:
Westinghouse R&D Center, Pittsburgh, PA 15235;
Raman Jayram
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260;
R. W. Wallace
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260;
J. R. Townsend
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260;
M. Miller
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
Get access

Abstract

Implantation of nitrogen into steels is known to affect surface sensitive mechanical properties. Tensile properties of thin foils implanted with either nitrogen or helium at 300 K have been measured. Fluences greater than 1 × 1016 ions/cm2 raise the yield stress and fracture stress and reduce the plastic strain to failure. Both nitrogen and helium give comparable stress-strain responses for equal average concentrations of implanted ions. The mechanical response is discussed in terms of plastic flow of laminated structures and hardening mechanisms. Initial results of atom probe field ion microscopy examinations of nitrogen implanted Fe-15 wt.% Cr-12 wt.% Ni alloy are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herman, H., Nucl. Instrum. & Methods 182/183, 887 (1981).Google Scholar
2. Singer, I. L. and Murday, J. S., J. Vac. Sci. Technol. 17 (1), 59 (1980).Google Scholar
3. Baron, M., Chang, A. L., Schreurs, J. and Kossowsky, R., Nucl. Instrum. & Methods 182/183, 531 (1981).Google Scholar
4. Eernisse, E. P. and Picraux, S. T., J. Appl. Phys. 48, 9 (1977).Google Scholar
5. Hartley, N.E.W., J. Vac. Sci. Technol. 12 (1), 485 (1975).Google Scholar
6. Hall, B. O., J. Nucl. Mater. 116, 123 (1983).Google Scholar
7. Harrod, D. L. and Kaminski, D. A., Mech. Res. Comm. 5 (6), 319 (1978).Google Scholar
8. Manning, I., Mueller, G. P., Computing Physics Communications 7, 85 (1974).Google Scholar
9. Diagrammy Sostoianiia Metallicheskikh Sistem; Nauka, Moscow p. 135 (1971).Google Scholar
10. Brenner, S. S. and Miller, M. K., J. of Metals 35, (3), 54 (1983).Google Scholar
11. Lawley, A. and Schuster, S., Trans. AIME 230, 27 (1964).Google Scholar
12. Arkulus, G. E., Compound Plastic Deformation of Layers of Different Metals, Daniel Javey & Co., Inc., New York, NY (1965), p. 44.Google Scholar