Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T16:02:01.357Z Has data issue: false hasContentIssue false

Effects of Low-Temperature Grown GaAs Intermediate Layers on the Crystalline Quality of GaAs-on-Si Epilayers

Published online by Cambridge University Press:  22 February 2011

T.C. Chong
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 0511
C.C. Phua
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 0511
W.S. Lau
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 0511
L.S. Tan
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 0511
Get access

Abstract

The incorporation of low-temperature (LT) GaAs intermediate layers grown at 230°C had been shown to have the effects of improving the crystalline quality of GaAs epilayers on Si. The use of this LT-GaAs intermediate layer between the GaAs nucleation layer and the GaAs overlayer has improved the photoluminescence (PL) peak intensity by about five times, and reduced the GaAs (004) X-ray diffraction full width at half maximum (FWHM) by 59 arcsecs. The PL results were subsequently confirmed by cathodoluminescence images. The dominant deep level electron trap in the LT-GaAs epilayer grown on Si substrate was the same as that found in LT-GaAs epilayer grown on GaAs substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).Google Scholar
2. Soga, T., Hattori, S., Sakai, S., Takeyasu, M. and Umeno, M., Electron. Lett. 20, 916 (1984).Google Scholar
3. Chand, N., People, R., Baiocchi, F.A., Wecht, K.W. and Cho, A.Y., Appl. Phys. Lett. 49, 815 (1986).Google Scholar
4. Choi, C., Otsuka, N., Munns, G., Houdre, R., Morkoc, H., Zhang, S.L., Levi, D. and Klein, M.V., Appl. Phys. Lett. 50, 992 (1987).Google Scholar
5. Palmer, J.E., Burns, G., Fonstad, C.G. and Thompson, C.V., Appl. Phys. Lett. 55, 990 (1989).Google Scholar
6. Horikoshi, Y., Kawashima, M. and Yamaguchi, H., Jpn. J. Appl. Phys. 27, 169 (1988).Google Scholar
7. Lau, W.S., Goo, C.H., Chong, T.C. and Chu, P.K., Jpn. J. Appl. Phys. 32, L 1192 (1993).Google Scholar
8. Kaplan, R., Surf. Sci. 93, 145 (1980).Google Scholar
9. Biegelsen, D.K., Ponce, F.A., Smith, A.J. and Tramontana, J.C., J. Appl. Phys. 61, 1856 (1987).Google Scholar
10. Stolz, W., Horikoshi, Y., Naganuma, M. and Nozawa, K., J. Cryst. Growth 95, 87 (1989).Google Scholar
11. Chand, N., Ziel, J.P. Van der, Weiner, J.S., Sergent, A.M. and Lang, D.V. in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D.K., Eastman, L.E. and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989) pp. 251266.Google Scholar
12. Chand, N., Ren, F., Macrander, A.T., Ziel, J.P. van der, Sergent, A.M., Hull, R., Chu, S.N.G., Chen, Y.K. and Lang, D.V., J. Appl. Phys. 67, 2343 (1990).Google Scholar
13. Georgakilas, A., Panayotatos, P., Stoemenos, J., Mourrain, J.L. and Christou, A., J. Appl. Phys. 71, 2679 (1992).Google Scholar
14. Smith, F.W., Calawa, A.R., Chen, C.L., Manfra, M.J. and Mahoney, L.J., IEEE Electron Dev. Lett. EDL–9, 77 (1988).Google Scholar
15. Martin, G.M., Mitonneau, A. and Mircea, A., Elect. Lett. 13, 191 (1977).Google Scholar