Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T07:50:59.507Z Has data issue: false hasContentIssue false

Effects of Ionic Flow and Amelogenins on the Lengthwise Growth of Octacalcium Phosphate Crystals in a Model System of Tooth Enamel Formation

Published online by Cambridge University Press:  01 February 2011

M. Iijima
Affiliation:
Asahi University School of Dentistry, Dental Materials and Technology, 1851-1 Hozumi, Hozumi-cho, Motosugun, Gifu 501-0296, Japan.
Y. Moriwaki
Affiliation:
Asahi University School of Dentistry, Dental Materials and Technology, 1851-1 Hozumi, Hozumi-cho, Motosugun, Gifu 501-0296, Japan.
H.B. Wen
Affiliation:
University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, USA.
T. Takagi
Affiliation:
Tokyo Medical and Dental University, School of Dentistry, Oral Biology, Japan.
A.G. Fincham
Affiliation:
University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, USA.
J. Moradian-Oldak
Affiliation:
University of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, USA.
Get access

Abstract

This paper briefly reviews our recent studies, which aimed to investigate the effects of 1) the Ca2+ and PO43- ions flow and 2) amelogenins on the lengthwise growth of octacalcium phosphate (OCP), which is a potent precursor of enamel apatite crystal. OCP crystals were grown at 37°C in a dual membrane system under various amount of ionic inflow into a reaction space, using 1) 5-30mM Ca and PO4 solutions as ionic sources and 2) extracted bovine amelogenin and recombinant murine amelogenins (rM179, rM166). With an increase in the amount of Ca2+ and/or PO43- ions flow, the length of OCP crystal increased, while the width decreased. As a result, the length to width (L/W) ratio of crystal changed from 3 to 95, while the width to thickness (W/T) ratio from 32 to 9. The effect of amelogenins was unique, regardless of the type of amelogenins: Rod-like and prism-like OCP crystals with large L/W (61∼107) and small W/T (1.3∼2.2) ratios were formed in 10% amelogenin gels. In contrast, characteristic ribbon-like OCP crystals grew without protein and with gelatin, albumin, polyacrylamide gel and agarose gel. Specific interaction of amelogenins with OCP crystal was ascribed to the self-assembly property of amelogenin molecules and their hydrophobic nature. It was suggested that ionic flow and amelogenins play some critical roles in the elongated growth of enamel crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nylen, M.U., Eanes, E.D. and Omnel, K.A., J. Cell Biol. 18, 109 (1963).Google Scholar
2. Kerebel, B., Daculsi, G. and Kerebel, L.M., J. Dent. Res. 58B, 844 (1979).Google Scholar
3. Kawamoto, T. and Shimizu, M., Calcif. Tissue Int. 46, 406 (1990).Google Scholar
4. Kawamoto, T. and Shimizu, M., Jpn. J. Oral Biol. 36, 365 (1994).Google Scholar
5. Eastoe, J.E., J Dent. Res. 58B, 753 (1979).Google Scholar
6. Termine, J.D., Belcourt, A.B., Christener, P.J., Conn, M.K. and Nylen, M.U., J Biol. Chem. 255, 9760 (1980).Google Scholar
7. Hopp, T. P. and Woods, K. R., Proc. Natl. Acad. Sci. USA 78, 3824 (1981).Google Scholar
8. Moradian-Oldak, J., Simmer, J.P., Lau, E.C., Sarte, P.E., Slavkin, H.C. and Fincham, A.G., Biopolymers 34, 1339 (1994).Google Scholar
9. Fincham, A.G., Moradian-Oldak, J., Diekwisch, T.G.H., Layaruu, D.M., Wright, J.T., Bringas, P. and Slavkin, H.C., J. Struct. Biol 115, 50 (1995).Google Scholar
10. Moradian-Oldak, J., Leung, W. and Fincham, A.G., J Struct Biol. 122, 320 (1998).Google Scholar
11. Nikifolk, G. and Simmons, N.S., J. Dent. Res. 44, 1119 (1965).Google Scholar
12. Iijima, M., “Formation of Octacalcium Phosphate in vitro”, Monographs in Oral SciVol.18. / Octacalcium Phosphate, ed. Chow, L.C. and Eanes, E.D. (Karger AG, 2001) pp1749.Google Scholar
13. Moradian-Oldak, J., Matrix Biology 20, 293 (2001).Google Scholar
14. Iijima, M., Moriwaki, Y., Takagi, T. and Moradian-Oldak, J., J. Crystal Growth 222, 615 (2001)Google Scholar
15. Iijima, M., Hayashi, K. and Moriwaki, Y., J. Crystal Growth 234, 539 (2002).Google Scholar
16. Iijima, M., Moriwaki, Y., Wen, H.B., Fincham, A.G. and Moradian-Oldak, J., J. Dent. Res. 81, 69 (2002).Google Scholar
17. Takagi, T., Suzuki, M., Baba, T., Minegishi, K. and Sasaki, S., Biochem. Biophysics. Res. Comm. 121, 592 (1984).Google Scholar
18. Shimokawa, H., Ogata, Y., Sasaki, S., Sobel, M.E., McQuillan, C.I., Termine, J.D. and Young, M.F., Adv. Dent. Res. 1, 293 (1987).Google Scholar
19. Simmer, J.P., Lau, E.C., Hu, C.C., Bringas, P., Santos, V., Aoba, T., Lacey, M., Nelson, D., Zeichner-David, M., Snead, M.L., Slavkin, H.C. and Fincham, A.G. Calcif. Tissue Int. 54, 312 (1994).Google Scholar
20. Hopp, T.P. and Woods, K.R., Proc. Natl. Acad. Sci. USA 78, 3824 (1981).Google Scholar
21. Brown, W.E., Smith, J.P., Lehr, J.R. and Frazier, A.W., Nature 196, 1048 (1962).Google Scholar
22. Wen, H.B., Moradian-Oldak, J., Leung, W., Bringas, P. Jr and Fincham, A.G., J. Struct. Biol. 126, 42 (1999).Google Scholar
23. Wen, H.B., Fincham, A.G. and Moradian-Oldak, J., Matrix. Biol. 20, 387 (2001).Google Scholar
24. Ruchel, R. and Brager, M.D., Anal. Biochem. 68, 415 (1975).Google Scholar
25. Wen, H.B., Moradian-Oldak, J. and Fincham, A.G., J. Dent. Res. 79, 1902 (2000).Google Scholar
26. Diekkwisch, T.G.H., Berman, B.J., Gentner, S. and Clavkin, H.C., Cell Tissue Res. 279, 149 (1995).Google Scholar
27. Daculsi, G., Kerebel, L.M. and Mitre, D., “Enamel crystals: size, shape, and length and growing process; high resolution TEM and biochemical study.” Tooth Enamel IV, ed. Fearnhead, R.W. and Suga, S., (Elsevier, 1984) pp.1418.Google Scholar