Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T13:57:43.024Z Has data issue: false hasContentIssue false

The Effects of Interfacial SiO2 on Pd2Si Formation

Published online by Cambridge University Press:  15 February 2011

D. M. Scott
Affiliation:
University of California, La Jolla, San Diego, CA 92093, (U.S.A.)
S. S. Lau
Affiliation:
University of California, La Jolla, San Diego, CA 92093, (U.S.A.)
R. L. Pfeffer
Affiliation:
U.S. Army Electronic Research and Development Command (ERADCOM), Fort Monmouth, NJ 07703, (U.S.A.)
R. A. Lux
Affiliation:
U.S. Army Electronic Research and Development Command (ERADCOM), Fort Monmouth, NJ 07703, (U.S.A.)
J. Mikkelson
Affiliation:
Xerox, Palo Alto, CA 94304, (U.S.A.)
L. WieluŃIski*
Affiliation:
California Institute of Technology, Pasadena, CA 91125, (U.S.A.)
M.-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125, (U.S.A.)
*
Present address: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Get access

Abstract

We investigated the effects of thin Si16O2 and Si18O2 interfacial layers on Pd2Si formation using He+ backscattering spectrometry and the16O(d,α)14N and 18O(p,α)15N nuclear reactions. SiO2 films from 10 to 50 Å thick were formed on Si<100> substrates by 16O2 or 18O2 plasma oxidation. Nickel, palladium or platinum films from 1000 to 1400 Å thick were then evaporated onto this SiO2 layer and the samples were annealed in vacuum at temperatures ranging from 250 to 750 °C. The minimum temperature necessary for Pd2Si formation is approximately 400 °C for about 24 Å of SiO2 compared with 600 °C for Pt2Si and 650 °C for Ni2Si formation. The ability of Pd2Si to form in the presence of an SiO2 interfacial layer is compared with that of Ni2Si and Pt2Si and is interpreted using the relative mobilities of the metals in SiO2 and the redistribution of the 18O during silicide formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Scott, D. M., Grunthaner, P. J., Tsaur, B. Y., Nicolet, M.-A. and Mayer, J. W., in Baglin, J. E. E. and Poate, J. M. (eds.), Proc. Symp. on Thin Film Interfaces and Interactions, Vol. 80–2, Electrochemical Society, Princeton, NJ, 1980, p. 148.Google Scholar
2 Blattner, R. J., Evans, C. A. Jr., Lau, S. S., Mayer, J. W. and Ullrich, B. M., J. Electrochem. Soc., 122 (1975) 1732.CrossRefGoogle Scholar
3 Bindell, J. B., Colby, J. W., Wonsidler, D. R., Conley, D. K., Poate, J. M. and Tisone, T. C., Thin Solid Films, 37 (1976) 441.Google Scholar
4 Crider, C. A., Poate, J. M. and Rowe, J. E., in Baglin, J. E. E. and Poate, J. M. (eds.), Proc. Symp. on Thin Film Interfaces and Interactions, Vol. 80–2, Electrochemical Society, Princeton, NJ, 1980, p. 135.Google Scholar
5 Föll, H. and Ho, P. S., J. Appl. Phys., 52 (1981) 5510.Google Scholar
6 Joubert, P., Auvray, P. and Henry, L., Thin Solid Films, 79 (1981) 235.Google Scholar
7 Scott, D. M. and Nicolet, M.-A., Nucl. Instrum. Methods, 182183 (1981) 65.Google Scholar
8 Lau, S. S. and van der Weg, W. F., in Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films— Interdiffusion and Reactions, Wiley, New York, 1978, p. 450.Google Scholar
9 Bower, R. W., Sigurd, D. and Scott, R. E., Solid–State Electron., 16 (1973) 1461.Google Scholar
10 Scott, D. M. and Nicolet, M.-A., in lasse, B., Destefants, G. L. and Gailliard, J. P. (eds.), Proc. 3rd Int. Conf. on Ion Beam Modification of Materials, Grenoble, September 6–10, 1982, in Nucl. Instrum. Methods, to be published.Google Scholar
11 Scott, D. M., Thesis, California Institute of Technology, 1982.Google Scholar
12 Tu, K. N., Chu, W. K. and Mayer, J. W., Thin Solid Films, 25 (1975) 403.Google Scholar
13 Pretorius, R., J. Electrochem. Soc., 128 (1981) 107.Google Scholar
14 Chu, W. K., Lau, S. S., Mayer, J. W., Miller, H. and Tu, K. N., Thin Solid Films, 25 (1975) 393.Google Scholar
15 Pretorius, R., Ramiller, C. L. and Nicolet, M.-A., Nucl. Instrum. Methods, 149 (1978) 629.CrossRefGoogle Scholar
16 Bartur, M., personal communication, 1982.Google Scholar
17 Ligenza, J. R., J. Appl. Phys., 36 (1965) 2703.Google Scholar
18 Turos, A., Wieluński, L. and Barcz, A., Nucl. Instrum. Methods, 111 (1973) 605.Google Scholar
19 Picraux, S. T., Nucl. Instrum. Methods, 149 (1978) 289.Google Scholar
20 Amsel, G., Nadai, J. P., D'Artemare, E., David, D., Girard, E. and Moulin, J., Nucl. Instrum. Methods, 92 (1971) 481.Google Scholar
21 Lien, C. -D., Wieluński, L. and Nicolet, M.-A., Nucl. Instrum. Methods., in the press.Google Scholar
22 Kim, H. C., Seiler, R. F., Herring, D. F. and Jones, K. W., Nucl. Phys., 57 (1964) 526.Google Scholar
23 Amsel, G. and Samuel, D., Anal. Chem., 39 (1967) 1689.Google Scholar
24 Pretorius, R., Harris, J. M. and Nicolet, M.-A., Solid–State Electron., 21 (1978) 667.Google Scholar
25 Pretorius, R., Strydom, W. and Mayer, J. W., Phys. Rev. B, 22 (1980) 1885.Google Scholar
26 Hetherington, G., Jack, K. H. and Ramsey, M. W., Phys. Chem. Glasses, 6 (1965) 6.Google Scholar
27 Dunn, T., Hetherington, G. and Jack, K. H., Phys. Chem. Glasses, 6 (1965) 16.Google Scholar