Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T10:15:37.375Z Has data issue: false hasContentIssue false

Effects of Hydrogen Plasma Treatment on Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

J.-K. Lee
Affiliation:
Dept. of Physics, Syracuse University, Syracuse, NY 13244–1130
E. A. Schiff
Affiliation:
Dept. of Physics, Syracuse University, Syracuse, NY 13244–1130
Get access

Abstract

We have studied the effects of hydrogen plasma treatments of a-Si:H at elevated temperatures using conductivity, photoconductivity, and spin density measurements. Effects were measured as a function of temperature and of treatment time; control specimens were subjected to comparable treatments without the plasma. In no case did plasma treatment improve the specimen photoconductivity over the as-deposited state. At treatment temperatures (230 °C < T < 460 °C) plasma treatment reduced the photoconductivity below that of the control specimen. This effect may be evidence for plasma-assisted dehydro-genation of the specimen. The defect structural equilibration determined by hydrogen chemical potential depending on temperature and hydrogen plasma is also addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berman, A., Chen, Z. M., Chik, K. P., John, P. K., Lim, P. K., Prasad, A., Srinivasan, G., Tong, B. Y. and Wong, S. K., J. Non-Cryst. Solids 59&60, 751 (1983).CrossRefGoogle Scholar
2. Pratt, B. and Weil, R., J. Non-Cryst. Solids 89, 9 (1987).CrossRefGoogle Scholar
3. Nakamura, M., Ohno, T., Miyata, K., Konishi, N., and Suzuki, T., J. Appl. Phys. 65, 3061 (1989).CrossRefGoogle Scholar
4. Pankove, J. I., Lampert, M. A., and Tarng, M. L., Appl. Phys. Lett. 32, 439 (1978).CrossRefGoogle Scholar
5. Tsuo, Y. S., Smith, E. B., and Deb, S. K., Appl. Phys. Lett. 51, 1436 (1987).CrossRefGoogle Scholar
6. Tsuo, Y. S., Deng, X. J., Smith, E. B., Xu, Y., and Deb, S. K., J. Appl. Phys. 64, 1604 (1988).CrossRefGoogle Scholar
7. Zafar, S. and Schiff, E. A., Phys. Rev. B 40, 5235 (1989).CrossRefGoogle Scholar
8. Street, R. A., Phys. Rev. B 43, 2454 (1991).CrossRefGoogle Scholar
9. Chen, Y. F., Huang, S. F., and Chen, W. S., Phys. Rev. B 44, 12748 (1991).CrossRefGoogle Scholar
10. McMahon, T. J. and Tsu, R., Appl. Phys. Lett. 51, 412 (1987).CrossRefGoogle Scholar
11. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar
12. Jackson, W. B., Tsai, C. C., and Thompson, R., Phys. Rev. Lett. 64, 56, (1990).CrossRefGoogle Scholar
13. Doyle, J. R., Doughty, D. A., and Gallagher, A., J. Appl. Phys. 68, 4375 (1990).CrossRefGoogle Scholar