Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-06T13:25:34.544Z Has data issue: false hasContentIssue false

The Effects of Growth Sequence on the Electronic Properties of Al-Ge-Ni Ohmic Contacts on (001) GaAs

Published online by Cambridge University Press:  25 February 2011

W. V. Lampert
Affiliation:
The Materials Directorate of Wright Laboratory (WL/MLBM), Wright-Patterson Air Force Base, Ohio 45433–6533
T. W. Haas
Affiliation:
The Materials Directorate of Wright Laboratory (WL/MLBM), Wright-Patterson Air Force Base, Ohio 45433–6533
E. S. Lambers
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611–2066
Paul H. Holloway
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611–2066
Get access

Abstract

The growth sequence of Al, Ge, and Ni metals was shown to dramatically affect the amount of heat treatment time required to convert the electrical properties from Schottky to ohmic behavior. Differences in the heat treatment times required to convert from rectifying to ohmic contact were dependent on the doping concentration of the contact layer and on the heat treatment temperature. Interdiffusion of component elements and phase formation have been studied to determine the origin of these effects. Auger depth profiles and X-ray diffraction have been used to determine the interdiffusion and phase formation resulting from various types of thermal processing. Elemental profiles and identification of phases of Ni-Ga, Ni-As, and Ni-Ga-Ge will be used to explain the origin of ohmic behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zuleeg, Rainer, Friebertshauser, P. E., Stephens, J. M., Watenabe, S. H., IEEE Elec. Dev. Lett. EDL–7, 11, 603604, 1986.Google Scholar
2. Zuleeg, Rainer, Friebertshauser, P. E., Stephens, J. M., Watenabe, S. H., Presentation at the Electrochemical Society Meeting, San Diego, Ca, 19 to 24 October, 1986.Google Scholar
3. Lampert, W. V., Haas, T. W., Holloway, Paul H., Materials Research Society Proceedings, 260, 941946, 1992.Google Scholar
4. Liliental-Weber, Z., Washburn, J., Musgrave, C., Weber, E. R., Zuleeg, R., Lampert, W. V., and Haas, T. W., Materials Research Society Symposium Proceedings, 126, 295301, 1988.Google Scholar
5. Graham, R. J., Erkasya, H. H., and Roedel, R. J., J. Elec. Soc. 35, 266267, 1988.Google Scholar
6. Graham, R. J., Erkasya, H. H., Edwards, J. L., and Roedel, R. J., JVSTB 6, 5, 15021505, 1988.Google Scholar
7. Graham, R. J., Nelson, R. W., Williams, P., Haddock, T. B., Baaklini, E. P., and Roedel, R. J., J. Elec. Mater. 19, 11, 12571263, 1990.Google Scholar
8. Heiblum, M., Nathan, M. I., and Chang, C. A., Solid-St. Elec. 25, 3, 185195, 1982.Google Scholar
9. Vidimari, F., Elec. Lett. 15, 675677, 1979.Google Scholar
10. Murakami, M., Childs, K. D., Baker, J. M., and Callegari, A., JVSTB 4, 4, 903911, 1986.Google Scholar
11. Shih, Y.-C., Murakami, M., Wilkie, E. L., and Callegari, A. C., J. Appl. Phys. 62, 2, 582590, 1987.Google Scholar
12. Lampert, W. V., PhD Thesis, University of Florida, 1992.Google Scholar
13. Ogawa, M., J. Appl. Phys., 51, 1, 406412, 1980.Google Scholar
14. Crouch, M. A., Gill, S. S., Woodward, J., Courtney, S. J., Williams, G. M., and Cullis, A. G., Solid-St. Elec. 33, 11, 14371446, 1990.Google Scholar
15. Robinson, G. Y., Solid-St. Elec. 18, 331342, 1975.Google Scholar
16. Hill, I. R., Lau, W. M., Yang, G. R., and North, R. A., Surface and Interface Analysis, 11, 12, 596598, 1988.Google Scholar
17. Ballingall, J. M., Wood, C. E. C., and Eastman, L. F., JVSTB 1, 3, 675681, 1983.Google Scholar