Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-25T03:31:00.922Z Has data issue: false hasContentIssue false

The EFfects of Elemental Sequence and Pairing on Interdiffusion and Phase Formation of Al-Ge-Ni Ohmic Contacts for (001) GaAs

Published online by Cambridge University Press:  22 February 2011

W. V. Lampert
Affiliation:
The Materials Directorate of Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7750
T. W. Haas
Affiliation:
The Materials Directorate of Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7750
Paul H. Holloway
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-2066
Get access

Abstract

The growth sequence of Al, Ge, and Ni metals has been shown to dramatically affect the amount of heat treatment time required to convert the ohmic contact metallization from Schottky to ohmic behavior. Interpretation of interdiffusion and phase formation of the Al-Ge, Al-Ni, or Ni-Ge thin film couples were measured. Auger depth profiles and thin film X-ray diffraction were used to determine interdiffusion and phase formation resulting from various types of thermal processing. The effects of interdiffusion and formation of phases such as Ni-Ga, Ni-As, Ni-Ga-Ge, and Ni-As-Ge from the two element metallizations on GaAs will be used to explain the origin of ohmic behavior for the ternary Al-Ge-Ni contacts to GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zuleeg, Rainer, Friebertshauser, P. E., Stephens, J. M., Watenabe, S. H., IEEE Elec. Dev. Lett. EDL–7, 11, 603604,1986.Google Scholar
2. Zuleeg, Rainer, Friebertshauser, P. E., Stephens, J. M., Watenabe, S. H., Presentation at the Electrochemical Society Meeting, San Diego, Ca, 19 to 24 October, 1986.Google Scholar
3 Lampert, W. V., Haas, T. W., Holloway, Paul H., Materials Research Society Proceedings, 260, 941946, 1992.Google Scholar
4. Liliental-Weber, Z., Washburn, J., Musgrave, C., Weber, E. R., Zuleeg, R., Lampert, W. V., and Haas, T. W., Materials Research Society Symposium Proceedings, 126, 295301, 1988.Google Scholar
5. Graham, R. J., Erkasya, H. H., and Roedel, R. J., J. Elec. Soc. 35, 266267, 1988.Google Scholar
6. Graham, R. J., Erkasya, H. H., Edwards, J. L., and Roedel, R. J., JVSTB 6, 5, 15021505, 1988.Google Scholar
7. Graham, R. J., Nelson, R. W., Williams, P., Haddock, T. B., Baaklini, E. P., and Roedel, R. J., J. Elec. Mater. 19, 11, 12571263, 1990.Google Scholar
8. Lampert, W. V., PhD Thesis, University of Florida, 1992.Google Scholar
9. Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA, 1991 Google Scholar
10. Chambers, S. A. and Loebs, V. A., Materials Research Society Symposium Proceedings, 221, 283288, 1991 Google Scholar
11. Neave, J. H., Larsen, P. K., Joyce, B. A., Gowers, J. P., and Veen, J. F. van der, JVSTB, 1, No. 3, 688–674, 1983.Google Scholar
12. Ballingall, J. M, Wood, C. E. C., and Eastman, L. F., JVSTB 1, No. 3, 675681, 1983.Google Scholar
13. Katnani, A. D., Chiaradia, P., Sang, H. W. Jr., and Bauer, R. S., JVSTB 2, No. 3, 471475, 1984.Google Scholar