Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T04:53:41.153Z Has data issue: false hasContentIssue false

Effects of elastic strain energies on a hydride precipitation in LaNi5-based compounds

Published online by Cambridge University Press:  11 February 2011

K. Tanaka
Affiliation:
Department of Advanced Materials Science, Kagawa University, 2217–20 Hayashi-cho, Takamatsu 761–0396, Japan
H. Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Yoshidahon-machi, Sakyo-ku, Kyoto 606–8501, Japan
M. Yamaguchi
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Yoshidahon-machi, Sakyo-ku, Kyoto 606–8501, Japan
M. Koiwa
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Yoshidahon-machi, Sakyo-ku, Kyoto 606–8501, Japan
Get access

Abstract

The elastic energies associated with hydride formation have been calculated using coherent elasticity theory. The energies modify the required condition for hydride nucleation to lower temperatures or higher hydrogen gas pressures. Since the elastic energies are quite large, hydride cannot form in a crystal or on a planer surface without assistance of a lattice defect. Hydride can form with reasonable excess hydrogen gas pressure only at a corner of specimen at which the most part of elastic energy is released.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van Vucht, J. H. N., Kuijpers, F. A. and Bruning, H. C. A. M., Philips Res. Reports 25, 133 (1970).Google Scholar
2. Willems, J. J. G. and Buschow, K. H. J., J. Less-Comm. Met. 129, 13 (1987).Google Scholar
3. Notten, P. H. L. and Einerhand, R. E. F., Adv. Mater. 3, 343 (1991).Google Scholar
4. Kisi, E. H., Buckley, C. E. and Gray, E. M., J. Alloys Comp. 185, 369 (1992).Google Scholar
5. Wernick, J. H. and Geller, S., Acta Cryst. 12, 662 (1959).Google Scholar
6. Fischer, P., Furrer, A., Busch, G. and Schlapbach, L., Helvetica Physica Acta 50, 421 (1977).Google Scholar
7. Tanaka, K., Okazaki, S., Watayo, Y., Inui, H., Yamaguchi, M. and Koiwa, M., Proc. The Fourth Pacific Rim International Conference on Advanced Materials and Processing, Eds. by Hanada, S., Zhong, Z., Nam, S. W. and Wright, R. N., (The Japan Institute of Metals, 2001) pp. 441444.Google Scholar
8. Tatsumi, K., Tanaka, I., Tanaka, K., Inui, H., Yamaguchi, M. and Adachi, H., to be published.Google Scholar
9. Bereznitsky, M., Ode, A., Hightower, J. E., Yeheskel, O., Jacob, I. and Leisure, R. G., J. Appl. Phys. 91, 5010 (2002).Google Scholar
10. Tanaka, K., Okazaki, S., Ichitsubo, T., Yamamoto, T., Inui, H., Yamaguchi, M. and Koiwa, M., Intermetallics 8, 613 (2000).Google Scholar
11. Wiswall, R., Hydrogen in metalls II, Eds. Alefeld, G. and Volkl, J., (Springer-Verlag 1978) p. 209.Google Scholar
12. Inui, H., Yamamoto, T., Hirota, M. and Yamaguchi, M., J. Alloys Comp. 330–332, 117 (2002).Google Scholar