Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T21:02:46.609Z Has data issue: false hasContentIssue false

Effects of Different Carbon Nanotube Supported Catalysts on Methanol and Ethanol Electro-Oxidation

Published online by Cambridge University Press:  31 January 2011

Raghavendar Reddy Sanganna Gari
Affiliation:
vyshnu245@gmail.com, Missouri State University, Physics, Astronomy, and Materials Science, Springfield, Missouri, United States
Zhou Li
Affiliation:
joe216793@hotmail.com, Missouri State University, Greenwood Laboratory School, Springfield, Missouri, United States
Lifeng Dong
Affiliation:
LifengDong@MissouriState.edu, Missouri State University, Physics, Astronomy, and Materials Science, Springfield, Missouri, United States
Get access

Abstract

In this work, Pt and Pt-Ru nanoparticles were synthesized on both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Effects of different nanotube supports on electrocatalytic activity of Pt and Pt-Ru nanoparticles for methanol and ethanol oxidations were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. In comparison to MWCNTs, SWCNT supported Pt and Pt-Ru catalysts demonstrate better electrocatalytic activities in terms of forward peak current density, the ratio of forward peak current density to reverse peak current density, and charge transfer resistance. This study indicates that SWCNTs can serve as effective catalyst supports for both direct methanol and ethanol fuel cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Maiyalagan, T., Viswanathan, B., and Varadaraju, U. V., Electrochemistry Communications 7, 905 (2005).Google Scholar
2 Lin, Y. H., Cui, X. L., Chien, C. H. Y., and , Wai, M., Langmuir 21, 11474 (2005).Google Scholar
3 Li, W. Z., Wang, X., Chen, Z. W., Waje, M., and Yan, Y. S., J. Phys. Chem. B. 110, 15353 (2006).Google Scholar
4 Girishkumar, G., Hall, T. D., Vinodgopal, K., and Kamat, P. V., J. Phys. Chem. B 110, 107 (2006).Google Scholar
5 Gu, Y. J. and Wong, W. T., Langmuir 22, 11447 (2006).Google Scholar
6 Wu, G., Chen, Y. S., Xu, B. Q., Electrochemistry Communications 7, 1237(2005).Google Scholar
7 Li, W. Z., Liang, C. H., Zhou, W. J., Qiu, J. S., Zhou, Z. H., Sun, G. Q., Xin, Q., J. Phys. Chem. B 107, 6292 (2003).Google Scholar
8 Dong, L. F., Sanganna Gari, R. R., Li, Z., Craig, M. M., and Hou, S. F., Carbon 48, 781 (2010).Google Scholar
9 Koczkur, K., Yi, Q. F., and Chen, A. C., Adv. Mater. 19, 2648 (2007).Google Scholar
10 Wang, Z. B., Yin, G. P., Shao, Y. Y., Yang, B. Q., Shi, P. F., and Feng, P. X., Journal of Power Sources 165, 9 (2007).Google Scholar
11 Guo, D. J., Qui, X. P., Chen, L. Q., Zhu, W. T., Carbon 47, 1680 (2009)Google Scholar
12 Kim, J. H., Ha, H. Y., Oh, I. H., Hong, S. A., Kim, H. N., and Lee, H. I., Electrochimica Acta 50, 801 (2004).Google Scholar
13 Wang, Z. B., Zuo, P. J., Wang, G. J., Du, C. Y., and Yin, G. P., J. Phys. Chem. C 112, 6582 (2008).Google Scholar