Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-20T23:54:24.058Z Has data issue: false hasContentIssue false

Effect of ZrO2 on the glass durability

Published online by Cambridge University Press:  21 March 2011

M. Lobanova
Affiliation:
Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau cedex, France
A. Ledieu
Affiliation:
Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau cedex, France
P. Barboux
Affiliation:
Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau cedex, France
F. Devreux
Affiliation:
Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau cedex, France
O. Spalla
Affiliation:
Service de Chimie Moléculaire, CEA Saclay, 91191 Gif sur Yvette, France
J. Lambard
Affiliation:
Service de Chimie Moléculaire, CEA Saclay, 91191 Gif sur Yvette, France
Get access

Abstract

Borosilicate glasses were prepared with the molar composition 70 SiO2-15 Na2O-15B2O3-n ZrO2 with n ranging from 0 to 10. The glasses were studied by conventional static dissolution tests of powders at 90°C in pure water and in buffered solutions for long times (months) and short times (minutes). During the first minutes of alteration in a buffered solution, sodium is rapidly leached until its loss becomes controlled by the silicon hydrolysis. The experimental data show that the introduction of zirconium drastically reduces the initial dissolution rate (Vo) of the glass. Zirconium strengthens the silica network but also strongly modifies the porous layer morphology. In the case of glasses with small Zr contents (less than 2%), the silica dissolution rate decreases but the formation of a passivating alteration layer is also delayed. As a result, small amounts of zirconium paradoxically decrease the loss of silica but increase the final loss of sodium and boron in the static leaching tests. Larger zirconium contents (above 5%) increase the durability of the glass regarding the initial dissolution rate and the final concentration of all elements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Devreux, F., Barboux, P., Filoche, M., Sapoval, B., J. of Materials Science 36, 1331 (2001.Google Scholar
2. Devreux, F., Barboux, P., J. of Nuclear Materials 298, 145 (2001)Google Scholar
3. Deruelle, O., Spalla, O., Barboux, P. and Lambard, J., J. Non Cryst. Solids 261, 237 (2000.Google Scholar
4. Larner, L. J., Speakman, K., Munjadar, A.J., J. Non Cryst. Solids 20, 43 (1976).Google Scholar
5. Mickalowicz, A., EXAFS for the MacIntosh, LURE, Orsay (1994)Google Scholar
6. Bourcier, W. L., Ebert, W. L. and Feng, X., Proc. Mat. Res. Soc. Symp. Ser. 294, 577 (1993).Google Scholar
7. Baes, C. F., Mesmer, R. E., The hydrolysis of cations, J. Wiley and Sons, New York (1976).Google Scholar
8. Aagard, P., Helgeson, H. C., Am. J. Sci. 282, 237 (1982).Google Scholar
9. Grambow, B., Mat. Res. Symp. Proc. Ser. 44, 15 (1985).Google Scholar
10. Jégou, C., Gin, S., Larché, F., J. of Nuclear Materials 280, 216 (2000).Google Scholar
11. Bourcier, W. L., Carroll, S. A., Phillips, B. L., Mat. Res. Symp. Proc. 333, 507 (1994).Google Scholar
12. Spalla, O., this symposium, to be published.Google Scholar
13. Galoisy, L., Calas, G., Ramos, A., Legrand, M., Allard, T., Morin, G., Fillet, C. and Pacaud, F., Proceedings of the summer school Mejannes le Clap, CEA Valrho (1997)Google Scholar