Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-09T10:58:58.124Z Has data issue: false hasContentIssue false

The Effect of Y and Zr on the Oxidation of NiA1

Published online by Cambridge University Press:  22 February 2011

Eckart Schumann
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D–70174 Stuttgart, Germany
J. C. Yang
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D–70174 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D–70174 Stuttgart, Germany
M. J. Graham
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
Get access

Abstract

The effect of Y and Zr on the oxidation behaviour of NiAl has been investigated using high resolution SIMS and analytical TEM. 18O tracer experiments in conjunction with SIMS showed that Y and Zr reduce the outward transport of cations during the growth of the AI2O3 scale. Complementary STEM-EDS measurements revealed segregation of Y and Zr at the metal/oxide interface as well as the grain boundaries in the AI2O3 scale. The amounts of segregation at both the interface and grain boundary were calculated to be less than one monolayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Przybylski, K. and Yurek, G. J., Mater. Sci. Forum 43,1 (1989).Google Scholar
2. Cotell, C. M., Yurek, G. J., Hussey, R. J., Mitchell, D. F. and Graham, M. J., Oxid. Met. 34, 173 (1990).Google Scholar
3. Pint, B. A. and Hobbs, L. W., Electrochem. Soc. Ext. Abstr. 1707 (1993).Google Scholar
4. Pieraggi, B. and Rapp, R. A., J. Electrochem. Soc. 140, 2844 (1993).Google Scholar
5. Funkenbusch, A. W., Smeggil, J. G. and Bornstein, N. S., Metall. Trans. 16A, 1164 (1985).Google Scholar
6. Grabke, H. J., Wiemer, D. and Viefhaus, H., Applied Surf. Sci. 47, 243 (1991).Google Scholar
7. Smialek, J. L., Metall. Trans. 18A, 164 (1987).Google Scholar
8. Luthra, K. L. and Briant, L., Oxid. Met. 28, 257 (1987).Google Scholar
9. Smeggil, J. G., Bornstein, N. S. and DeCrescente, M. A., Oxid. Met. 30, 259 (1988).Google Scholar
10. Lees, D. G., Oxid. Met. 30,267 (1988).Google Scholar
11. Prescott, R., Mitchell, D. F. and Graham, M. J., Proc. 2nd Int. Conf. on Microscopy of Oxidation 455 (1993).Google Scholar
12. Strecker, A., Salzberger, U. and Mayer, J., Practical Metallography 30,482 (1993).Google Scholar
13. Ikeda, J. A. S., Chiang, Y. M., Garatt-Reed, A. J. and Sande, J. B. V., J. Amer. Cer. Soc. 76, 2447 (1993).Google Scholar
14. Pint, B. A., Garatt-Reed, A. J. and Hobbs, L. W., Proc. 2nd Int. Conf. Microscopy of Oxidation 463 (1993).Google Scholar