Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T16:26:59.575Z Has data issue: false hasContentIssue false

Effect of Weak Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

Published online by Cambridge University Press:  01 February 2011

Ricardo M. Carranza
Affiliation:
Comisión Nacional de Energìa Atómica, Av. Gral. Paz 1499 San Martìn, 1650 Buenos Aires, Argentina
C. Mabel Giordano
Affiliation:
Comisión Nacional de Energìa Atómica, Av. Gral. Paz 1499 San Martìn, 1650 Buenos Aires, Argentina
Martín A. Rodríguez
Affiliation:
Comisión Nacional de Energìa Atómica, Av. Gral. Paz 1499 San Martìn, 1650 Buenos Aires, Argentina
Raul B. Rebak
Affiliation:
Comisión Nacional de Energìa Atómica, Av. Gral. Paz 1499 San Martìn, 1650 Buenos Aires, Argentina Lawrence Livermore National Laboratory, PO Box 808 L-631, 7000 East Ave. Livermore, CA, 94550, U.S.A.
Get access

Abstract

Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90°C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids.

Results show that the CR of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher CR, and Acetic acid maintained the CR of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions.

Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rebak, R.B. and Crook, P., Proc. Pressure Vessels and Piping Conf., 25-29 July 2004, San Diego, CA, PVP-Vol. 483, p. 131 (ASME, 2004: New York, NY).Google Scholar
2 Rebak, R.B. in Corrosion and Env. Degradation, Vol. II, p. 69 (Wiley-VCH,2000, Germany).Google Scholar
3 Annual Book ASTM Standards, vol. 03.02 (West Conshohocken, PA: ASTM Int. 2005).Google Scholar
4 Rebak, R. B.Corrosion of Non-Ferrous Alloys. I. Nickel-, Cobalt-, Copper, Zirconium- and Titanium-Based Alloys” in Corrosion and Environmental Degradation, Volume II, p. 69 (Weinheim, Germany: Wiley-VCH, 2000).Google Scholar
5 Evans, K.J., Yilmaz, A., Day, S.D., Wong, L.L., Estill, J.C. and, Rebak, R.B., JOM, pp. 5661 (January 2005).Google Scholar
6 Rebak, R.B., Paper 05610, Corrosion/2005 (NACE International, 2005: Houston, TX).Google Scholar
7 Gordon, G.M., Corrosion, 58, 811 (2002).Google Scholar
8 Yucca Mountain Science and Engineering Report, U. S. Department of Energy, Office of Civilian Radioactive Waste Management, DOE/RW-0539, Las Vegas, NV, May 2001.Google Scholar
9 Rebak, R.B., Paper 05610, Corrosion/2005 (NACE International, 2005: Houston, TX).Google Scholar
10 Dunn, D.S., Yang, L., Wu, C., Cragnolino, G.A., Mat. Res. Soc. Symp. Proc. Vol 824 (MRS, 2004: Warrendale, PA)Google Scholar
11 Dunn, D.S., Pan, Y.-M., Chiang, K., Yang, L., Cragnolino, G.A. and He, X., JOM, pp. 4955 (January 2005).Google Scholar
12 Carranza, R.M, Rodrìguez, M.A., Rebak, R.B., Paper 06622, Corrosion/2006 (NACE Int., 2005: Houston, TX).Google Scholar
13 Day, S.D., Whalen, M.T., King, K.J., Hust, G.A., Wong, L.L., Estill, J.C., Rebak, R.B., Corrosion, 60, 804 (2004).Google Scholar
14 March, J., Adv. Organic Chemistry, Reactions, Mechanisms, and Strucutre. 3rd Ed., Sons, J. Wiley &, p. 1103, N.Y., 1985.Google Scholar
15 Annual Book ASTM Standards, vol. 03.02 (West Conshohocken, PA: ASTM Int. 2005).Google Scholar
16 Carranza, R.M., Rodrìguez, M.A., Rebak, R.B., Corrosion, 63, 480 (2007).Google Scholar
17 CRC Handbook of Chem. and Phys., Lide, David R., Ed., 85th Ed., CRC Press, NY, 2004.Google Scholar
18 Critical Stability Constants, Smith, R.M. and Martell, A.E., eds., Plenum Press, NY, 1976.Google Scholar
19 Stability Constants, Part I: Organic Ligands, Bjerrum, J., Schwarzenbach, G., and Sillén, L.G., eds., The Chemical Society, London, 1957 Google Scholar
20 Lloyd, A.C., Noël, J.J., McIntyre, S., Shoesmith, D.W., Electrochim. Acta 49, 3015 (2004).Google Scholar
21 Dunn, D.S., Pensado, O., and Cragnolino, G.A., Paper 05588, Corrosion/2005 (NACE Int., 2005: Houston, TX).Google Scholar
22 Dunn, D.S., Pan, Y.-M., Yang, L. and Cragnolino, G.A., Corrosion, 61, 1078 (2005).Google Scholar
23 Dunn, D.S., Pan, Y.-M., Yang, L. and Cragnolino, G.A., Corrosion, 62, 3 (2006).Google Scholar
24 Carranza, R.M, Rodríguez, M.A., Rebak, R.B., Paper 07581, Corrosion/2007 (NACE Int., 2007: Houston, TX).Google Scholar