Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-16T23:52:17.188Z Has data issue: false hasContentIssue false

Effect of W Substitution in Strontium Bismuth Tantalate Ferroelectric Ceramics: Enhanced Ferroelectric Properties

Published online by Cambridge University Press:  01 February 2011

Indrani Coondoo
Affiliation:
indrani_coondoo@yahoo.com, National Physical Laboratory, New Delhi, India
Neearj Panwar
Affiliation:
neeraj.panwar@gmail.com, University of Puerto Rico, San Juan, United States
Ashok Biradar
Affiliation:
abiradar@mail.nplindia.ernet.in, National Physical Laboratory, New Delhi, India
Arun Jha
Affiliation:
dr_ak_jha@yahoo.co.in, Delhi Technological University, New Delhi, India
Get access

Abstract

Tungsten (W)-substituted SBT ceramics [SrBi2(Ta1-xWx)2O9; 0.0 ≤ x ≤ 0.20] were synthesized by solid state reaction method using different sintering temperatures (1100 οC, 1150 οC, 1200 οC and 1250 οC). W substitution is found to significantly affect the electrical properties of SBT, including dielectric permittivity, Curie temperature, and ferroelectricity. Dielectric constant (εr) and the Curie temperature (Tc) increase with increasing W content. The dielectric loss reduces significantly with increase in W concentration. The maximum Tc of ~ 390 οC is observed in the sample with x = 0.20 as compared to ~ 320 οC for the pure sample when sintered at 1200 οC. The peak ε increases from ~ 270 in the sample with x = 0.0 to ~ 700 for the composition with x = 0.20, when sintered at 1200 οC. All the tungsten-substituted ceramics have higher 2Pr than that in the pristine sample. The maximum 2Pr (~25 μC/cm2) is obtained in composition with x = 0.05 sintered at 1200 οC. These effects have been interpreted based on the model of the recovery of oxygen vacancies upon W substitution. Such compositions with low loss and high Pr values should be excellent materials for highly stable ferroelectric memory devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Araujo, C. A. P. de, Cuchiaro, J. D. McMillan, L. D. Scott, M. C. and Scott, J. F. Nature 374, 627 (1995).10.1038/374627a0Google Scholar
2 Subbarao, E. C. Integr. Ferr. 12, 33 (1996).10.1080/10584589608225746Google Scholar
3 Wu, Y. Nguyen, C. Seraji, S. Forbess, M. J. Limmer, S. J. Chou, T. and Cao, G. Z. J. Amer. Ceram. Soc. 84, 2882 (2001).Google Scholar
4 Martin, P. D. Castro, A. Millan, P. and Jimenez, B. J. Mater. Res. 13, 2565 (1998).10.1557/JMR.1998.0358Google Scholar
5 Noguchi, Y. Miyayama, M. and Kudo, T. Phys. Rev. B 63, 214102 (2001).Google Scholar
6 Coondoo, I. Jha, A K and Agarwal, S K, J. Eur. Ceram. Soc. 27, 253 (2007).10.1016/j.jeurceramsoc.2006.04.167Google Scholar
7 Martirena, H. T. and Burfoot, J. C. J. Phys. C: Solid State Phys. 7, 3182 (1974).10.1088/0022-3719/7/17/024Google Scholar
8 Noguchi, Y. Miyayama, M. and Kudo, T. J. Appl. Phys. 88, 2146 (2000).10.1063/1.1305547Google Scholar
9 Singh, K. Bopardik, D. K. and Atkare, D. V. Ferroelectrics 82, 55 (1988).10.1080/00150198808201337Google Scholar
10 Watanabe, H. Mihara, T. Yoshimori, H. and Araujo, C. A. P. de, Jpn. J. Appl. Phys. 34, 5240 (1995).10.1143/JJAP.34.5240Google Scholar
11 Atsuki, T. Soyama, N. Yonezawa, T. and Ogi, K. Jpn. J. Appl. Phys. 34, 5096 (1995).Google Scholar
12 Friessnegg, T. Aggarwal, S. Ramesh, R. Nielsen, B. Poindexter, E. H. and Keeble, D. H. Appl. Phys. Lett. 77, 127 (2000).Google Scholar
13 Xu, Y. H. Ferroelectric Materials (Elsevier Science Publishers, Amsterdam, 1991).Google Scholar
14 Coondoo, I. Panwar, N. and Jha, A. K. J. Am. Ceram. Soc. (Communicated, 2010).Google Scholar
15 Watanabe, H. Mihara, T. Yoshimori, H. and Araujo, C. A. P. de, Jpn. J. Appl. Phys. 34, 5240 (1995).Google Scholar
16 Miyayama, M. Nagamoto, T. and Omoto, O. Thin Sol. Films 300, 299 (1997).Google Scholar
17 Xu, Y. H. Ferroelectric Materials (Elsevier Science Publishers, Amsterdam, 1991)Google Scholar
18 Das, R. R. Bhattacharya, P. Perez, W. and Katiyar, R. S. Ceram. Int. 30, 1175 (2004).Google Scholar
19 Desu, S. B. Joshi, P. C. Zhang, X. and Ryu, S. O. Appl. Phys. Lett. 71, 1041 (1997).10.1063/1.119721Google Scholar