Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T06:21:32.714Z Has data issue: false hasContentIssue false

Effect of the deposition rate on thin films of CuZnAl obtained by thermal evaporation

Published online by Cambridge University Press:  01 February 2011

L. López-Pavón
Affiliation:
FIME-UANL, Ave. Universidad S/N. Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México. C.P. 66450
E. López-Cuellar
Affiliation:
FIME-UANL, Ave. Universidad S/N. Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México. C.P. 66450 CIIDIT, Km. 10 de la Nueva Autopista al Aeropuerto Internacional de Monterrey, Apodaca, Nuevo León, C.P. 66600
A. Torres-Castro
Affiliation:
FIME-UANL, Ave. Universidad S/N. Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México. C.P. 66450 CIIDIT, Km. 10 de la Nueva Autopista al Aeropuerto Internacional de Monterrey, Apodaca, Nuevo León, C.P. 66600
C. Ballesteros
Affiliation:
Departamento de Física, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid. Spain.
C. José de Araújo
Affiliation:
Department of Mechanical Engineering, Universidade Federal de Campina Grande, Av. Aprígio Veloso, 882, Bodocongó, Campina Grande - PB, Brazil.
Get access

Abstract

Thermal evaporation is used to deposit thin films of CuZnAl on silicon substrates. For this purpose, a CuZnAl shape memory alloy is used as evaporation source. The chemical composition and the phases present in the films are evaluated at two different deposition rates: 7 and 0.2 Å/s. The thin films are heat treated to promote the diffusion of the elements and characterized by X-ray Diffraction, Energy Dispersive X-ray Spectroscopy and Scanning Transmission Electron Microscopy (STEM). It is shown that the chemical composition of the thin films is significantly different to that of the CuZnAl alloy used as evaporation source. Moreover, the films produced at 7 Å/s show a significant loss of Zn, contrary to the results obtained using a deposition rate of 0.2 Å/s. It is also observed that the composition varies across the thickness of the film, suggesting that the various alloying elements are evaporated at different rates during the deposition process. Finally the predominant phases present in the films belong to the AlxCuy family.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fu, Yongqing, Sputtering deposited TiNi films: relationship among processing, stress evolution and phase transformation behaviors. Surface and Coatings Technology Vol. 167 (2003) 120128 Google Scholar
2. Fu, Y.Q., Thin film shape memory alloys and microactuators, Int. J. Computational Materials Science and Surface Engineering, Vol. 2, Nos. 3/4, 2009, pp 208226.Google Scholar
3. Otsuka, K., Wayman, C.M., Shape memory materails, First ed., Cambridge University Press, UK 2002.Google Scholar
4. López-Cuellar Enrique. Fatigue par cyclage thermique sous contrainte de fils à mémoire deforme Ti-Ni-Cu après différents traitements hermomécaniques. Thèse d'Etat, INSA de Lyon, Lyon I, 2002, 180p.Google Scholar
5. De Araujo, C. J., Comportement cyclique de fils en alliage à mémoire de forme Ti-Ni-Cu: analyse electro-thermomécanique, dégradation et fatigue par cyclage thermique sous contrainte. Thèse d'Etat, INSA de Lyon, Lyon I, 1999, 177Google Scholar
6. Wolf, R. H. and Heuer, A. H., Journal of Microelectromechanical Systems, 4 (1995) 206.Google Scholar
7. Fu, Y.Q., Du, H. J., Huang, W. M., Zhang, S., Hu, M., Sens. Actuat. 112 (2004) 395408.Google Scholar
8. Miyazaki, S., Ishida, A., Mater. Sci. Engng. A 273–275 (1999) 106.Google Scholar
9. Krulevitch, P., Lee, A. P., Ramsey, P. B., Trevino, J. C., Hamilton, J., Northrup, M. A., J. MEMS, 5 (1996) 270.Google Scholar
10. Gill, J. J., Ho, K., Carman, G. P., J. MEMS, 11 (2002) 6877.Google Scholar
11. Makino, E., Mitsuya, T., Shibata, T., Sens. Actuat., 79 (2000) 251259.Google Scholar
12. Liu, HB, Espinosa-Medina, MA, Sosa, E, et al. Structural Segregation and Ordering of Trimetallic Cu-Ag-Au Nanoclusters. Journal of Computational and Theoretical Nanoscience. (2009) Vol. 6 Issue: 10 Pages: 22242227.Google Scholar
13. Lee, HM, Mahapatra, SK, Anthony, JK, et al. Effect of the titanium ion concentration on electrodeposition of nanostructured TiNi films. Journal of Materials Science (2009) Vol. 44 Issue: 14 Pages: 37313735.Google Scholar
14. Troiani, H. “Dezincificación y Transformaciones de fase en el sistema Cu-Zn.” Tesis (1998)Google Scholar
15. De Miccoad, G., B., A. E., Pasquevichab, D. M.. “Caracterización de aleaciones Cu-Zn-Al: Estabilidad térmica de las fases y decincación.Revista Matéria 12: (2007) 245252 Google Scholar
16. Kowalski, M., Spencer, P.J., (1993). “Thermodynamic Reevaluation of the Cu-Zn System.” Equi. Diagram, Thermodyn., Calculations 36: 432438 Google Scholar
17. Liang, H., Chang, Y.A., A Thermodynamic Description for the Al-Cu-Zn System”.Equim Diagram, Thermodyn., Calculations 72 (1998) 2537.Google Scholar
18. Smith, Donald L.., Thin-Film Deposition Principles & Practice. Ed. Mc Graw Hill. (1995) 140–145.Google Scholar
19. Haberkorn, N., Ahlers, M. and Lovey, F.C.., Tuning of the martensitic transformation temperature in Cu–Zn thin films by control of zinc vapor pressure during annealing. Scripta Materialia 61: (2009) 821824 Google Scholar