Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-16T06:47:21.435Z Has data issue: false hasContentIssue false

The Effect of Temperature on the Redox Constraints for the Processing of High-Level Nuclear Waste into a Glass Waste Form

Published online by Cambridge University Press:  21 February 2011

Henry D. Schreiber
Affiliation:
Department of Chemistry, Virginia Military Institute, Lexington, VA 24450
Charlotte W. Schreiber
Affiliation:
Department of Chemistry, Virginia Military Institute, Lexington, VA 24450
Margaret W. Riethmiller
Affiliation:
Department of Chemistry, Virginia Military Institute, Lexington, VA 24450
J. Sloan Downey
Affiliation:
Department of Chemistry, Virginia Military Institute, Lexington, VA 24450
Get access

Abstract

The oxidation-reduction equilibria of selected multivalent elements in an alkali borosilicate glass melt (Savannah River Laboratory frit #131) were measured as a function of the imposed oxygen fugacity over the temperature range from 950°C to 1350°C. Redox constraints on the processing of high-level nuclear waste into the glass melt require that the prevailing oxygen fugacity be about 10−5 to 10−12 Zatm at 950°C, about 10−2 to 10−9 atm at 1150°C, and about 100 to 10−7 atm at 1350°C. Such conditions circumvent foaming under oxidizing situations and metal/sulfide precipitation if the system becomes too reducing. The defined oxygen fugacity ranges correspond to the previously prescribed range of 0.1 to 0.5 for the [Fe2+]/[Fe3+] ratio in the resulting glass, independent of the processing temperature from 950°C to 1350°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Plodinec, M.J., in Advances in the Fusion of Glass, edited by Bickford, D.F. et.al., (American Ceramic Society, Westerville OH, 1988), pp. 9.19.11.Google Scholar
2. Bickford, D.F. and Diemer, R.B., J. Non-Cryst. Sol. 84, 276284 (1986).Google Scholar
3. Bickford, D.F., Diemer, R.B., and Iverson, D.C., J. Non-Cryst. Sol. 84, 285291 (1986).Google Scholar
4. Goldman, D.S., Brite, D.W., and Richey, W.C., J. Amer. Ceram. Soc. 69, 413417 (1986).Google Scholar
5. Schreiber, H.D., Kozak, S.J., Wetmore, D.G., Schreiber, C.W., and Downey, J.S., in Advances in Ceramics; Nuclear Waste Management, (American Ceramic Society, Westerville OH, 1989), in press.Google Scholar
6. Schreiber, H.D., Carpenter, B.E., Minnix, L.M., Balazs, G.B., and Solberg, T.N., Glastechn. Ber. 56, 10171022 (1983).Google Scholar
7. Schreiber, H.D. and Hockman, A.L., J. Amer. Ceram. Soc. 70, 591594 (1987).Google Scholar
8. Goldman, D.S. and Brite, D.W., J. Amer. Ceram. Soc. 69, 411413 (1986).Google Scholar
9. Bernadzikowski, T.A., Allender, J.S., Stone, J.A., Gordon, D.E., Gould, T.H., and Westberry, C.F. III, Bull. Amer. Ceram. Soc. 62, 13641384 & 1390 (1983).Google Scholar
10. Schreiber, H.D., Balazs, G.B., Carpenter, B.E., Kirkley, J.E., Minnix, L.M., and Jamison, P.L., J. Amer. Ceram. Soc. 67, C106–C108 (1984).Google Scholar
11. Schreiber, H.D., Kozak, S.J., Leonhard, P.L., and McManus, K.K., Glastechn. Ber. 60, 389398 (1987).Google Scholar
12. Schreiber, H.D., J. Non-Cryst. Sol. 84, 129141 (1986).Google Scholar
13. Johnston, W.D., J. Amer. Ceram. Soc. 48, 184190 (1965).Google Scholar
14. Schreiber, H.D., Leonhard, P.G., Nofsinger, R.G., Henning, M.W., Schreiber, C.W., and Kozak, S.J., in Advances in the Fusion of Glass, edited by Bickford, D.F. et.al., (American Ceramic Society, Westerville OH, 1988, pp. 29.129.14.Google Scholar
15. Schreiber, H.D., J. Geophys. Res. 92, 92259232 (1987).Google Scholar
16. Schreiber, H.D., Thanyasiri, T., Legere, R.A., and Lauer, H.V., Lun. Planet. Sci. IX, 1978, 10181020.Google Scholar