Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T01:11:48.221Z Has data issue: false hasContentIssue false

The Effect of Temperature and Time on the Formation of a Reaction Interlayer During Aluminizing of a Carbon Steel

Published online by Cambridge University Press:  01 February 2011

R. Torres
Affiliation:
Facultad de Ingeniería Mecánica, UMSNH, Morelia, Mich., México.
V.H. López
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, P.O. Box 888, Morelia, Mich., 58000, México. E-mail; composito@yahoo.com
J.P. Arredondo
Affiliation:
Facultad de Ingeniería Mecánica, UMSNH, Morelia, Mich., México.
R. García
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, P.O. Box 888, Morelia, Mich., 58000, México. E-mail; composito@yahoo.com
J.A. Verduzco
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, P.O. Box 888, Morelia, Mich., 58000, México. E-mail; composito@yahoo.com
M.L. Mondragón
Affiliation:
Instituto Tecnológico de Morelia, Morelia, Mich., México.
Get access

Abstract

A kinetic study was performed on the growth of a reaction interlayer between molten Al and carbon steel substrates at temperatures between 665 to 820°C by holding Al/flux/steel assemblies, in a tube furnace, at temperature for times up to 120 min. An Ar atmosphere and a K-Al-F based flux were used to enable spreading of molten Al on the steel substrates. Chemical and microstructural characterization of the samples revealed that the interlayer is composed of FeAl3 and Fe2Al5, being the second phase significantly thicker. The Fe2Al5 phase grows toward the steel with a tongue like morphology. Isothermal growth profiles of the reaction interlayer followed a parabolic behavior, meaning that at the beginning the reaction is very rapid and once that a continuous interlayer is formed the growth of the interlayer is controlled by interdifussion of species across the interlayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, J. R., Aluminium and aluminium alloys, (ASM International, Materials Park, OH, USA, 1998) p. 451.Google Scholar
2. Cleaning and finishing of aluminium and aluminium alloys, Metals Handbook, 9th ed., vol 5., American Society for Testing of Metals 1982, p. 571.Google Scholar
3. Lopez, V. H. and Kennedy, A. R., J. Colloid Interf. Sci. 298, 356 (2006).Google Scholar
4. Kattner, U. in Binary alloy phase diagrams, edited by Massalki, T.B. et. al., ASM International, Metals Park, OH. USA. 1990.Google Scholar
5. Sasaki, T., Yakou, T., Mochiduki, K. and Ichinose, K., ISIJ International 45, 1887 (2005).Google Scholar
6. Vikas, Jindal and Srivastava, V. C., J. Mat. Proc. Technol, 195, 88 (2008).Google Scholar
7. Barbier, F., Manuelli, D. and Bouché, K., Scripta Mater., 36, 425 (1997).Google Scholar
8. Bouche, K., Barbier, F. and Coulet, A., Mat. Sci. Eng., A249, 167 (1998).Google Scholar
9. Shahverdi, H. R., Ghomashchi, M. R., Shabestari, S. and Hejazi, J., J. Mat. Sci. 37, 1061 (2002).Google Scholar
10. Hwang, S. H., Song, J. H. and Kim, Y. S., Mat. Sci. Eng., A390, 437 (2005).Google Scholar
11. Wang, D., Shi, Z., Zou, L., Appl. Surf. Sci. 214, 304 (2003).Google Scholar