Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T10:07:44.275Z Has data issue: false hasContentIssue false

Effect of Strained Si-Si Bonds in Amorphous Silicon Incubation Layer on Microcrystalline Silicon Nucleation

Published online by Cambridge University Press:  17 March 2011

Hiroyuki Fujiwara
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Michio Kondo
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Akihisa Matsuda
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Get access

Abstract

In order to investigate microcrystalline silicon (μc-Si:H) nucleation from the hydrogenated amorphous silicon (a-Si:H) phase, we performed a H2-plasma treatment of a-Si:H layers deposited at different temperatures. In the H-treatment experiment, the formation process of an infrared peak at ∼1937 cm-1, assigned to SiHn (n=1∼2) complex, is studied, as the SiHn complex is proposed to be a precursor for the μc-Si:H nucleation. With increasing the a-Si:H deposition temperature, the total amount of the SiHn complex formed by the H treatment increased. Nucleation of μc-Si:H under high H2-dilution conditions showed a clear relationship with the SiHn complex formed by the H treatment. The SiHn complex formation process, in terms of strained Si-Si bond breaking by H, is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuda, A., Thin Solid Films 337, 1 (1999), and references therein.Google Scholar
2. Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
3. Fujiwara, H., Kondo, M., and Matsuda, A., Phys. Rev. B 63, 115306 (2001).Google Scholar
4. Fujiwara, H., Toyoshima, Y., Kondo, M., and Matsuda, A., J. Non-Cryst. Solids 266–269, 38 (2000).10.1016/S0022-3093(99)00715-2Google Scholar
5. Fujiwara, H., Toyoshima, Y., Kondo, M., and Matsuda, A., Mat. Res. Soc. Symp. Proc. 609 (2000) (in press).10.1557/PROC-609-A2.1Google Scholar
6. Fujiwara, H., Kondo, M., and Matsuda, A., Phys. Rev. B (submitted).Google Scholar
7. Fujiwara, H., Toyoshima, Y., Kondo, M., and Matsuda, A., Phys. Rev. B 60, 13598 (1999).Google Scholar
8. Stutzmann, M., Appl. Phys. Lett. 47, 21 (1985).Google Scholar
9. Danesh, P. and Pantchev, B., Semicond. Sci. Technol. 15, 971 (2000).Google Scholar
10. Brantley, W. A., J. Appl. Phys. 44, 534 (1973).Google Scholar
11. Keudell, A. von and Abelson, J. R., J. Appl. Phys. 84, 489 (1998).Google Scholar
12. Toyoshima, Y., Arai, K., Matsuda, A., Tanaka, K., J. Non-Cryst. Solids 137&138, 765 (1991).Google Scholar
13. Nonomura, S., Yoshida, N., Gotoh, T., Sakamoto, T., Kondo, M., Matsuda, A., and Nitta, S., J. Non-Cryst. Solids 266–269, 474 (2000).10.1016/S0022-3093(99)00778-4Google Scholar
14. Beitia, C., Preyss, W., Sole, R. Del, Borensztein, Y., Phys. Rev. B 56, R4371 (1997).Google Scholar