Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T15:31:21.550Z Has data issue: false hasContentIssue false

Effect of Post Exposed Hydrogen on Chemisorbed Ethylene on Si(100)-(2×l)

Published online by Cambridge University Press:  22 February 2011

Wolf Widdra
Affiliation:
Department of Chemical Engineering and Center for Quantized Electronic Structures (QUEST), University of California, Santa Barbara, CA 93106
W. Henry Weinberg
Affiliation:
Department of Chemical Engineering and Center for Quantized Electronic Structures (QUEST), University of California, Santa Barbara, CA 93106
Get access

Abstract

The effect of post adsorbed atomic hydrogen on the adsorption, desorption, and decomposition of ethylene on Si(100)-(2×l) has been studied using high-resolution electron energy loss spectroscopy (HREELS), temperature programmed desorption (TPD), and low-energy electron diffraction (LEED). Exposures to atomic hydrogen of more than 1015 atoms/cm2 convert the initial (2×l) reconstruction of sp3-hybridized, di-σ bonded ethylene to a (l×l) structure. Furthermore, after post exposure to atomic hydrogen, the thermal desorption peak of molecular ethylene is shifted up by approximately 100 K and reduced in intensity. HREEL spectra for deuterated ethylene show the formation of a C-H bond after exposure to atomic hydrogen, whereas the C-C bond remains intact. We explain our data by an atomic hydrogen-driven conversion of the di-σ bonded ethylene to a mono-σ bonded surface ethyl. Thermal activation after post exposure to atomic hydrogen leads to decomposition of about 60% of the initial ethylene in contrast to the observed molecular desorption in the absence of hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cheng, C.C., Taylor, P.A., Wallace, R.M., Gutleben, H., Clemen, L., Colaianni, M.L., Chen, P.J., Weinberg, W.H., Choyke, W.J., and Yates, J.T. Jr., Thin Solid Films 225, 196 (1993).Google Scholar
[2] Taylor, P.A., Bozack, M.J., Choyke, W.J., and Yates, J.T. Jr., J.Appl.Phys. 65, 1099 (1989).CrossRefGoogle Scholar
[3] Yoshinobu, J., Tsuda, H., Onchi, M., and Nishijima, M., J. Chem. Phys. 87,7332 (1987).CrossRefGoogle Scholar
[4] Nishijima, M., Yoshinobu, J., Tsuda, H., and Onchi, M., Surf. Sci. 192, 383 (1987).Google Scholar
[5] Huang, C., Widdra, W., Wang, X.-S., and Weinberg, W.H., J. Vac. Sci. Technol. A 11, 2250 (1993).Google Scholar
[6] Huang, C., Widdra, W., and Weinberg, W.H., Surf. Sci. Lett. (submitted).Google Scholar
[7] Clemen, L., Wallace, R.M., Taylor, P.A., Dresser, M.J., Choyke, W.J., Weinberg, W.H., and Yates, J.T. Jr., Surf. Sci. 268, 205 (1992).CrossRefGoogle Scholar
[8] Taylor, P.A., Wallace, R.M., Cheng, C.-C., Dresser, M.J., Choyke, W.J., Weinberg, W.H., and Yates, J.T. Jr., J. Am. Chem. Soc. 114,6754 (1992).Google Scholar
[9] Bozack, M.J., Choyke, W.J., Muehlhoff, L., and Yates, J.T. Jr., J. Appl. Phys. 60, 3750 (1986).CrossRefGoogle Scholar
[10] Bozack, M.J., Taylor, P.A., Choyke, W.J., and Yates, J.T. Jr., Surf. Sci. 179, 132 (1987).CrossRefGoogle Scholar
[11] Wang, X.-S. et al. , J. Vac. Sci. Technol. A (in press).Google Scholar
[12] Anderson, D.R., in Analysis of Silicones, Smith, A.L., Ed. (John Wiley, New York, 1978) p.247.Google Scholar
[13] Widdra, W., Huang, C., and Weinberg, W.H. (in preparation).Google Scholar
[14] Rueter, M.A. and Vohs, J.M., Surf. Sci. 262,42 (1992).Google Scholar
[15] Cheng, C.C., Lucas, S.R., Gutleben, H., Choyke, W.J., and Yates, J.T. Jr., Surf. Sci. Lett. 273,441 (1992).Google Scholar