Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T11:07:02.562Z Has data issue: false hasContentIssue false

Effect of P-Doping Level-POCl3 Diffused or Spin-On Deposited-On the Gettering Efficiency of Polycrystalline Silicon After RTA or CTA

Published online by Cambridge University Press:  26 February 2011

M. Loghmarti
Affiliation:
Laboratoire de physique des matériaux. Rabat., Morocco.
K. Mahfoud
Affiliation:
Labo. PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg cedex, France.
J. C. Muller
Affiliation:
Labo. PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg cedex, France.
D. Sayah
Affiliation:
Laboratoire de physique des matériaux. Rabat., Morocco.
P. Siffert
Affiliation:
Labo. PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg cedex, France.
Get access

Abstract

Large grain polycrystalline silicon wafers have been subjected to post-thermal annealing after a POCl3 pre-diffusion or after a phosphorus doped silica-film deposition (1019p/cm3- 2.1021p/cm3). The different doping levels are obtained by a dilution of the P-doped SOG (2.1021 at/cm3) in a undoped SOG solution .For the first time we have achieved the maximum of the gettering efficiency after post-thermal annealing. The best combination of post thermal cycle parameters and doping level improves the minority carrier diffusion length of quite (300% to 400%) for POCl3 pre-diffused samples and (200% to 275%) for spin-on P-doped (P-SOG) polycrystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wolf, S., Tauber, R.N., Silicon processing for VLSI Era, volume 1, Process Technology. Lattice press, Sunset Beach (California), (1986).Google Scholar
2. Loghmarti, M., Stuk, R., Muller, J.C., Sayah, D., Siffert, P.. Appl. Phys. Lett. 62(9), 979 (1993).Google Scholar
3. Cerofolini, G.F., Polignano, M.L., Bender, H., Clays, C.. Phy. Stat. Sol (a). 103, 643 (1987).Google Scholar
4. Polignano, M.L., Cerofolini, G.F., Bender, H., Clays, C., J. Reffle. Phy. Stat. Sol (a). 103, 307 (1987).Google Scholar
5. Goodman, A.M.. J. Appl. Phy. 32, 2250 (1961).Google Scholar
6. Loghmarti, M., Mahfoud, K., Ventura, L., Muller, J.C., Sayah, D., Siffert, P.. To be published in J. Phys III.Google Scholar
7. Chou, S.L. and Gibbons, J.F., J. Appl. Phys. 46, 1197 (1975)Google Scholar
8. Lecrosnier, D., Paugam, J., Pelous, G., Richou, F. and Salvi, M., J. Appl. Phys. 52, 5090 (1981)Google Scholar
9. Wilcox, W.R., Lachapelle, T.J. and Forbes, D.H., J. Electrochem. Soc. 111, 1377 (1964)Google Scholar
10. Wolley, E. D. and Stickler, R., J. Electrochem. Soc. 114, 1287 (1967)Google Scholar
11. Ourmazd, A. and Schroter, W., Appl. Phys. Lett. 45, 781 (1984)Google Scholar
12. Perichaud, I., Martinuzzi, S.. Twety second IEEE Photovoltaic Specialist conference, 877 (1991).Google Scholar
13. Yoneta, M., Kamiura, Y., Hashimoto, F.. J. Appl. Phy. 70 (3), 1295 (1991).Google Scholar
14. Kang, J.S., Schroder, D.K.. J. Appl. Phy. 65, 2974 (1989).Google Scholar