Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T08:53:16.375Z Has data issue: false hasContentIssue false

The Effect of Oxygen on The Electrical Activation and Diffusion of Ion-Implanted Boron

Published online by Cambridge University Press:  15 February 2011

K. Kyllesbech Larsen
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS.
P. A. Stoik
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS.
V. Privitera
Affiliation:
CNR-IMETEM, Catania, ITALY.
J. G. M. van Berkum
Affiliation:
Centre for Manufacturing Technology, Philips, Eindhoven, THE NETHERLANDS.
W. B. de Boer
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS.
G. Marinino
Affiliation:
INFM & Dipartimento di Fisica, Università di Catania, Catania, ITALY.
N. E. B. Cowern
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS.
H. G. A. Huizing
Affiliation:
Philips Research Laboratories, Eindhoven, THE NETHERLANDS.
Get access

Abstract

Transient enhanced diffusion (TED) and electrical activation (EA) of ion-implanted boron during rapid thermal annealing has been investigated using three types of boron doped p-type Si (100) substrates: (a) Cz 20 Ωcm, (b) 3 μm thick 20 Ωcm epitaxial Si layer (epi-layer) grown on a 20 Ωcm Cz substrate, and (c) 3 μm thick 20 Ωcm epi-layer grown on a 5 mΩcin Fz substrate. The level of oxygen is known to decrease from material type (a) to (c). The samples were implanted with 20 keV, 5×1013 cm−2 boron and subjected to rapid thermal annealing (RTA) at various temperatures and times. The EA and TED were studied using spreading resistance profiling (SRP) and secondary ion mass spectrometry (SIMS), respectively. Although the amount of TED is almost identical for the three substrates, the EA is found to be significantly higher in the epi-layers compared to Cz substrates. It is speculated that the trapping of vacancies by oxygen in the ion-damaged region leads to an increase in the interstitial supersaturation during annealing, which then results in enhanced boron clustering and reduced electrical activation in the peak of the implanted profile.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hu, S.M., Material Science and Engineering R13, 105185 (1994).Google Scholar
[2] Chao, H.S., Crowder, S.W., Griffin, P.B., and Plummer, J.D., J. Appl. Phys. 79, 2353 (1996).Google Scholar
[3] Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraíz, M., Luftman, H.S., Poate, J.M., and Haynes, T.E., J. Appl. Phys. (1 May issue, 1997).Google Scholar
[4] Semiconductor Industry Association (SIA) in The National Technology Roadmap for Semiconductors, (1994).Google Scholar
[5] Hofker, W.K., Werner, H.W., Oosthoek, D.P., and Koeman, N.J., Appl. Phys. 4, 125 (1974).Google Scholar
[6] Cowern, N.E.B., Janssen, K.T.F., and Jos, H.F.F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
[7] Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Oostra, D.J., Phys. Rev. Lett. 69, 116 (1992).Google Scholar
[8] Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 290380 (1989).Google Scholar
[9] Michel, A.E., Rausch, W., and Ronsheim, P.A., Appl. Phys. Lett. 51, 487 (1987).Google Scholar
[10] Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
[11] Eaglesham, D.J., Agarwal, A., Haynes, T.E., Gossmann, H.-J., Jacobson, D.C., and Poate, J.M., Nucl. Instrum. Methods B 120, 1 (1996).Google Scholar
[12] Kyllesbech Larsen, K., Privitera, V., Coffa, S., Priolo, F., Campisano, S.U., and Camera, A., Phys. Rev. Lett. 76, 1493 (1996).Google Scholar
[13] Privitera, V., Coffa, S., Priolo, F., Kyllesbech Larsen, K., and Mannino, G., Appl. Phys. Lett. 68, 3422 (1996).Google Scholar
[14] Nishikawa, S., Tanaka, A., and Yamaji, T., Appl. Phys. Lett. 60, 2270 (1992).Google Scholar
[15] Stolk, P.A., Eaglesham, D.J., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
[16] Davies, G. and Newman, R.C. in Carbon in Mono-crystalline Silicon, Materials, Properties and Preparation Vol. 3b., Handbook of Semiconductors, edited by Moss, T.S. and Mahajan, S., (North-Holland, Amsterdam) Chap. 21pp. 15571636(1994).Google Scholar
[17] Bender, H. and Vanhellemont, J., in Oxygen in Silicon. Materials, Properties and Preparation Vol. 3b., Handbook of Semiconductors, edited by Moss, T.S. and Mahajan, S., (North-Holland, Amsterdam) Chap. 22 pp. 16371753(1994).Google Scholar
[18] Quick Reference Manual for Silicon Integrated Circuit Technology, edited by Beadle, W.E., Tsai, J.C.C., and Plummer, R.D. (John-Wiley & sons - New York, 1985).Google Scholar
[19] The influence of neutral scattering centers can be estimated including the scattering model by Sciar to the normal mobility model (i.e., Conwell-Weisskopf and lattice scattering). See Ridley, B.K. in Quantum Processes in Semiconductors (Clarendon - Press - Oxford, 1993).Google Scholar
[20] Law, M.E., IEEE Trans. Computer-Aided Design 10, 1125 (1991).Google Scholar
[21] Jones, K.S., Elliman, R.G., Petravic, M.M., and Kringhøj, P., Appl. Phys. Lett. 68, 3111 (1996).Google Scholar
[22] Cowern, N.E.B., Huizing, H.G.A., Stolk, P.A., Visser, C.C.G., Kruif, R.C.M., Kyllesbech Larsen, K., Privitera, V., Nanver, L.K., and Crans, W., Nuci. Instr. Meth. B120, 14 (1996).Google Scholar
[23] Oehrlein, G.S., Krafcsik, I., Lindstrom, J.L., Jaworoski, A.E., and Corbett, J.W., J. Appl. Phys. 54, 179 (1983).Google Scholar
[24] Trauwaert, M.-A., Vanhellemont, J., Maes, H.E., van Bavel, A.-M., Langouche, G., and Clauws, P., Appl. Phys. Lett. 66, 3057 (1995).Google Scholar
[25] Cowern, N.E.B., Cacciato, A., Custer, J.S., Saris, F.W., and Vandervorst, W., Appl. Phys. Lett. 68, 1150 (1996).Google Scholar
[26] Bourret, A., Inst. Phys. Conf. Ser. 87, 39 (1987).Google Scholar
[27] Vanhellemont, J. and Romano-Rodriguez, A., Phys. Stat. Sol. (a) 138, 417 (1993).Google Scholar