Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T09:13:33.324Z Has data issue: false hasContentIssue false

The Effect of Oxygen Exposure on Pentacene Thin Film Electronic Structure

Published online by Cambridge University Press:  01 February 2011

A. Vollmer
Affiliation:
Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H., Albert-Einstein-Str. 15, D-12489 Berlin, Germany
O. D. Jurchescu
Affiliation:
Materials Science Center, Rijksuniversiteit Groningen, NL-9747 AG Groningen, Netherlands
I. Arfaoui
Affiliation:
Materials Science Center, Rijksuniversiteit Groningen, NL-9747 AG Groningen, Netherlands
I. Salzmann
Affiliation:
Humboldt-Universität zu Berlin, Institut f. Physik, Newtonstr. 15, D-12489 Berlin, Germany
T. T. M. Palstra
Affiliation:
Materials Science Center, Rijksuniversiteit Groningen, NL-9747 AG Groningen, Netherlands
P. Rudolf
Affiliation:
Materials Science Center, Rijksuniversiteit Groningen, NL-9747 AG Groningen, Netherlands
J. Niemax
Affiliation:
Universität Stuttgart, 3. Physikalisches Institut, D-70550 Stuttgart, Germany
J. Pflaum
Affiliation:
Universität Stuttgart, 3. Physikalisches Institut, D-70550 Stuttgart, Germany
J. P. Rabe
Affiliation:
Humboldt-Universität zu Berlin, Institut f. Physik, Newtonstr. 15, D-12489 Berlin, Germany
N. Koch
Affiliation:
Humboldt-Universität zu Berlin, Institut f. Physik, Newtonstr. 15, D-12489 Berlin, Germany
Get access

Abstract

We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene thin films. It is found that O2 and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic compound. Also, we obtain no evidence for considerable p-type doping of pentacene by O2 at low pressure. However, oxygen exposure lowers the hole injection barrier at the interface between Au and pentacene by 0.25 eV, presumably due to a modification of the Au surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dimitrakopoulos, C. D. and Malenfant, P. R. L., Adv. Mater. 14, 99 (2002).Google Scholar
2 Halik, M., Klauk, H., Zschieschang, U., Kriem, T., Schmid, G., Radlik, W., and Wussow, K., Appl. Phys. Lett. 81, 289 (2002).Google Scholar
3 Stadlober, B., Satzinger, V., Maresch, H., Somitsch, D., Haase, A., Pichler, H., Rom, W., and Jakopic, G., Proc. SPIE 5217, 112 (2003).Google Scholar
4 Jurchescu, O. D., Baas, J., and Palstra, T. T. M., Appl. Phys. Lett. 84, 3061 (2004).Google Scholar
5 Karl, N., Charge Carrier Mobility in Organic Molecular Crystals, ed. Farchioni, R. and Grosso, G. (Springer, Berlin, 2001) Chap. 8, pp.283.Google Scholar
6 Butko, V. Y., Chi, X., Lang, D. V., and Ramirez, A. P., Appl. Phys. Lett. 83, 4773 (2003).Google Scholar
7 Goldmann, C., Haas, S., Krellner, C., Pernstich, K. P., Gundlach, D. J., and Batlogg, B., J. Appl. Phys. 96, 2080 (2004).Google Scholar
8 Pannemann, Ch., Diekmann, T., and Hilleringmann, U., J. Mater. Res. 19, 1999 (2004).Google Scholar
9 Northrup, J. E. and Chabinyc, M. L., Phys. Rev. B 68, 041202 (2003).Google Scholar
10 Jurchescu, O. D., et al., to be published.Google Scholar
11 Brown, A. R., Jarrett, C. P., Leeuw, D. M. de, and Matters, M., Synth. Met. 88, 37 (1997).Google Scholar
12 Jo, J., Heremans, J. J., Bradbury, F., Chen, H., and Soghomonian, V., Nanotechnol. 15, 1023 (2004).Google Scholar
13 Koch, N., Ghijsen, J., Pireaux, J.-J., Schwartz, J., Johnson, R. L., Elschner, A., and Kahn, A., Appl. Phys. Lett. 82, 70 (2003).Google Scholar
14 Watkins, N. J., Yan, L., and Gao, Y. L., Appl. Phys. Lett. 80, 4384 (2002).Google Scholar
15 Seki, K. and Ishii, H., J. Electron Spectrosc. Relat. Phenom. 88, 821 (1998).Google Scholar
16 Mattheus, C. C., Dros, A. B., Baas, J., Oostergetel, G. T., Meetsma, A., Boer, J. L. de, and Palstra, T. T. M., Synth. Met. 138, 475 (2003).Google Scholar
17 Harada, Y., Ozaki, H., and Ohno, K., Phys. Rev. Lett. 52, 2269 (2004).Google Scholar
18 Azuma, Y., Hasebe, T., Miyamae, T., Okudaira, K. K., Harada, Y., Seki, K., Morikawa, E., Saile, V., and Ueno, N., J. Synchrotron Radiation 5, 1044 (1998).Google Scholar
19 Gao, W. Y. and Kahn, A., Appl. Phys. Lett. 79, 4040 (2001).Google Scholar
20 Silinsh, E. A., Organic Molecular Crystals, (Springer, Berlin, 1980), Vol. 16.Google Scholar
21 Weiss, H. (Universität Magdeburg), private communication.Google Scholar