Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:18:47.209Z Has data issue: false hasContentIssue false

Effect of Low Temperature ion Irradiation on the Microstructure of Nitride Ceramics

Published online by Cambridge University Press:  15 February 2011

S.J. Zinkle
Affiliation:
Metals and Ceramics Division and P.O. Box 2008, Oak Ridge, TN 37831-6376USA, zinklesj@oml.gov
L.L. Snead
Affiliation:
Metals and Ceramics Division and P.O. Box 2008, Oak Ridge, TN 37831-6376, USA
W. S. Eatherly
Affiliation:
Metals and Ceramics Division and P.O. Box 2008, Oak Ridge, TN 37831-6376, USA
J.W. Jones
Affiliation:
Metals and Ceramics Division and P.O. Box 2008, Oak Ridge, TN 37831-6376, USA
D.K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376, USA
Get access

Abstract

Cross-section transmission electron microscopy was used to investigate the microstructure of polycrystalline silicon nitride (Si3N4) and aluminum nitride (AIN) following 2 MeV Si ion irradiation at 80 and 400 K up to a fluence of 4×1020 ions/m2(maximum damage of ∼ 10 displacements per atom, dpa). A buried amorphous band was observed at both temperatures in Si3N4 in the region corresponding to the peaks in the implanted ion and displacement damage. From a comparison of Si3N4specimens irradiated at different fluences, it is concluded that the amorphization is primarily controlled by the implanted Si concentration rather than the displacement damage level. Si3N4 amorphization did not occur in regions well-separated from the implanted ions for doses up to at least 3 dpa at 80 K, whereas amorphization occurred in the ion implanted region (calculated Si concentration >0.01 at.%) for damage levels as low as ∼0.6 dpa. The volumetric swelling associated with the amorphization of Si3N4, is <10%. Amorphization was not observed in any of the irradiated AIN specimens. A moderate density of small (∼3 nm) defect clusters were observed in the crystalline damaged regions of both the Si3N4 and AIN specimens at both irradiation temperatures. Aligned network dislocations were also observed in the AIN specimen irradiated to high dose at 80 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Atobe, K., Honda, M., Fukuoka, N., Okada, M., and Nakagawa, M., Jap. J. Appl. Phys. 29 (1), 150 (1990).Google Scholar
2. Zinkle, S.J. and Kinoshita, C., J. Nucl. Mater. 251, 200 (1997).Google Scholar
3. Zinkle, S.J. and Snead, L.L., Nucl. Instr. Meth. B 116, 92 (1996).Google Scholar
4. Zinkle, S.J. and Pells, G.P., J. Nucl. Mater. 253, 120 (1998).Google Scholar
5. Meldrum, A., Zinkle, S.J., Boatner, L.A., and Ewing, R.C., Phys. Rev. B, in press (1999).Google Scholar
6. Yano, T., Tezuka, M., Miyazaki, H., and Iseki, T., J. Nucl. Mater. 191–194, 635 (1992).Google Scholar
7. Yano, T. and Iseki, T., J. Nucl. Mater. 203, 249 (1993).Google Scholar
8. Youngman, R.A. and Mitchell, T.E., Radiat. Eff. 74, 267 (1983).Google Scholar
9. Matsunaga, A., Kinoshita, C., Nakai, K., and Tomokiyo, Y., J. Nucl. Mater. 179–181, 457 (1991).Google Scholar
10. Inui, H., Mori, H., and Fujita, H., Acta Metall. 37 (5), 1337 (1989).Google Scholar
11. Mori, H., Sakata, T., Yasuda, H., and Maeda, M., J. Vac. Sci. Technol. B 12 (4), 2376 (1994).Google Scholar
12. Cartz, L., Karioris, F.G., and Fournelle, R.A., Radiat. Eff. 54, 57 (1981).Google Scholar
13. Bhattacharya, R.S., Rai, A.K., and Pronko, P.P., J. Appl. Phys. 61 (10), 4791 (1987).Google Scholar
14. Vardiman, R.G., in Processing and Charaterization of Materials using Ion Beams, MRS Symposium Proceedings, edited by Rehn, L.E., Greene, J., and Smidt, F.A. (Materials Research Society, Pittsburgh, 1989), Vol. 128, p. 369.Google Scholar
15. Boise, W., Peteves, S.D., and Saris, F.W., Appl. Phys. A 58, 493 (1994).Google Scholar
16. Brensheidt, F., Wieser, E., Matz, W., Mticklich, A., and Moller, W., Appl. Phys. A 65, 281 (1997).Google Scholar
17. Brensheidt, F., Oswald, S., Mticklich, A., Wieser, E., and Moller, W., Nucl. Instr. Meth. B 129, 483 (1997).Google Scholar
18. Wang, L.M., Wang, S.X., Gong, W.L., Ewing, R.C., and Weber, W.J., Mater. Sci. Eng. A 253, 106 (1998).Google Scholar
19. Wang, C.- M., Pan, X., Rtihle, M., Riley, F.L., and Mitomo, M., J. Mater. Sci. 31, 5281 (1996).Google Scholar
20. Ziegler, J.F., Biersak, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
21. Mota, F. de Brito, Justo, J.F., and Fazzio, A., Phys. Rev. B 58 (13), 8323 (1998).Google Scholar
22. Naguib, H.M. and Kelly, R., Radiat. Eff. 25, 1 (1975).Google Scholar
23. Abe, H., Yamamoto, S., and Naramoto, H., Nucl. Instr. Meth. B 127/128, 170 (1997).Google Scholar
24. Devanathan, R., Sickafus, K.E., Weber, W.J., and Nastasi, M., Nucl. Instr. Meth. B 141, 366 (1998).Google Scholar
25. Hobbs, L.W., Sreeram, A.N., Jesurum, C.E., and Berger, B.A., Nucl. Instr. Meth. B 116, 18 (1996).Google Scholar
26. Zinkle, S.J., in Microstructure Evolution During Irradiation, MRS Symposium Proceedings, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and Rubia, T. Diaz de la (Materials Research Society, Pittsburgh, 1997), Vol. 439, p. 667.Google Scholar