Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-06T08:58:40.525Z Has data issue: false hasContentIssue false

The Effect of Hydrogen on the Molecular-Beam-Epitaxy Growth of GaN on Sapphire Under Ga-Rich Conditions

Published online by Cambridge University Press:  10 February 2011

S. L. Buczkowski
Affiliation:
Physics Department,
Zhonghai Yu
Affiliation:
Physics Department,
M. Richards-Babb
Affiliation:
Chemistry Department, West Virginia University, Morgantown, WV 26506;
N. C. Giles
Affiliation:
Physics Department,
L. T. Romano
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304; tmyers@wvu.edu
T. H. Myers
Affiliation:
Physics Department,
Get access

Abstract

Nucleation and growth of GaN under Ga-rich conditions by molecular beam epitaxy using a nitrogen rf plasma source is shown to result in both a smoother GaN surface and a reduced inversion domain content. In addition, preliminary results of the dramatic effect of atomic hydrogen on growth kinetics for Ga-rich growth are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, H., Sawaki, N., Asaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
2. Nakamura, S., Jpn. J. Appl. Phys. 30, 1705 (1991).Google Scholar
3. Kuznia, J. N., Asif Khan, M., Olson, D. T., Kaplan, R., and Freitas, J., J. Appl. Phys. 73, 4700 (1993).Google Scholar
4. Qian, W., Skowronski, M., DeGraef, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Appl. Phys. Lett. 66, 1252 (1995).Google Scholar
5. Lester, S. D., Ponce, F. A., Crafford, M. G., and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
6. Trager-Cowan, C., O’Donnell, K.P., Hooper, S.E. and Foxon, C.T., Appl. Phys. Lett. 68, 355 (1996).Google Scholar
7. Sitar, Z., Smith, L. L., and Davis, R. F., J. Cryst. Growth 141, 11 (1994).Google Scholar
8. Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 67, 1541 (1995).Google Scholar
9. Yu, Zhonghai, Buczkowski, S.L., Giles, N.C., Myers, T.H. and Richards-Babb, M.R., Appl. Phys. Lett. 69, 2731 (1996).Google Scholar
10. Romano, L.T., Northrup, J.E. and O’Keefe, M.A., Appl. Phys. Lett. 69, 2394 (1996).Google Scholar
11. Richards-Babb, M., Buczkowski, S.L., Yu, Zhonghai, And Myers, T.H., Mater. Res. Soc. Symp. Proc. 395, 237 (1996).Google Scholar
12. Moustakas, T.D. and Molnar, R.J., Mat. Res. Symp. Proc. 281, 753 (1993).Google Scholar
13. See, for example, Guha, S., Bojarczuk, N.A. and Kisher, D.W., Appl. Phys. Lett. 69, 2879 (1996).Google Scholar
14. Jones, C.R., Lei, T., Kaspi, R. and Evans, K.R., Mater. Res. Soc. Symp. Proc. 395, 141 (1996).Google Scholar
15. Brandt, M.S., Johnson, N.M., Molnar, R.J., Singh, R. and Moustakas, T.D., Appl. Phys. Lett. 64, 2264 (1996).Google Scholar