Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T05:49:48.389Z Has data issue: false hasContentIssue false

Effect of Hydrogen Dilution on Structure and Electronic Properties of Ge:H and GeYSi1-Y Films Deposited by Low Frequency Plasma

Published online by Cambridge University Press:  01 February 2011

Andrey Kosarev
Affiliation:
akosarev@inaoep.mx, INAOE, Electronics, Luis Enrique Erro No.1, Sta. Maria tonanzintla, Puebla, 72000, Mexico, 52 222 2663 100 Ext. 1409
L. Sanchez
Affiliation:
lmorales@inaoep.mx, National Institute for Astrophysics, Optics ans Electronics, Puebla, 72000, Mexico
A. Torres
Affiliation:
atorres@inaoep.mx, National Institute for Astrophysics, Optics ans Electronics, Puebla, 72000, Mexico
T. Felter
Affiliation:
felter1@llnl.gov, Lawrence Livermore National Laboratory, CA, 94550, United States
A. Ilinskii
Affiliation:
ilinski@siu.buap.mx, Benemerita Universidad Autonoma de Puebla, Puebla, N/A, 72050, Mexico
Y. Kudrjavtsev
Affiliation:
yuriyk@cinvestav.mx, CINVESTAV-IPN, D.F, N/A, 07360, Mexico
R. Asomoza
Affiliation:
rasomoza@conacyt.mx, CINVESTAV-IPN, D.F, N/A, 07360, Mexico
Get access

Abstract

We report on a systematical study of growth rate, surface morphology, hydrogen and oxygen incorporation, optical and electrical properties in Ge:H and GeYSi1-Y:H, Y> 0.85 films, deposited in a capacitive reactor by low frequency PE CVD. Silane and germane were used as feed gases diluted by hydrogen. Hydrogen dilution characterized by R= QH2/[QSiH4+QGeH4], where QH2, QSiH4, and QGeH4 are gas flows of hydrogen, silane and germane, respectively. The flow was varied in the range of R=20 to 80. Composition of the films was characterized by SIMS profiling. We did not observed a significant change of the deposition rate Vd in GeYSi1-Y:H films in all the range of R, while for Ge:H films Vd was significantly reduced after R=50. AFM characterization of the surface morphology demonstrated that at R=50 average height <H>(R) reached maximum in both Ge:H and GeYSi1-Y:H films, while average diameter <D>(R) had a minimum in GeYSi1-Y:H films and maximum in Ge:H films. Both Ge:H and GeYSi1-Y:H films demonstrated change of E04 in the studied range of R, and a minimum clearly appeared in E at R=50-60 suggesting significant reduction in weak bonds of these films. The activation energy of conductivity Ea slightly increases with R in Ge:H films and shows no definitive trend in GeYSi1-Y:H: films. Both FTIR and SIMS data show a general trend of reducing hydrogen and oxygen content with R. These two types of films showed different behavior and correlations between surface morphology and optical and electrical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rath, J.K., Tichelaar, F.D., Schropp, R.E.I.. Solar Energy Materials & Solar Cells, 74, 533 (2002).Google Scholar
2. Isomura, M., Nakahata, K., Shima, M., Taira, S., Wakisaka, K., Tanaka, M., Kiyama, S.. Solar Energy Materials&Solar cells, 74, 519 (2002).Google Scholar
3. Krause, M., Stiebig, H., Carius, R., and Wagner, H., Mat. Res. Soc. Symp. Proc., 664 A26.5.1 (2001).Google Scholar
4. Masini, G., Cencelli, V., Colace, L., DeNotaristefani, F., Assanto, G.. Physica E, 16, 614 (2003).Google Scholar
5. Ambrosio, R. C., Torres, A., Kosarev, A., Heredia, A.H., Garcia, M., Mat.Res. Soc. Symp. Proc., 808, A4.29 (2004)Google Scholar
6. Torres, A., Kosarev, A., Cruz, M.L. Garcia, Ambrosio, R.. J.Non-Cryst. Solids, 329, 179 (2003).Google Scholar
7. Garcia, M., Ambrosio, R., Torres, A., Kosarev, A., J. Non-Cryst. Solids, 338–340, 744 (2004).Google Scholar
8. Luft, W., Tsuo, Y. Simon, “Hydrogenated amorphous silicon alloy deposition processes”, Marcel Dekker, Inc., (1993)Google Scholar
9. Searle, T., “Properties of amorphous silicon and its alloys”, EMIS Datareviews Series, No.19, INSPEC (1998)Google Scholar
10. Dalal, V. L., “Growth chemistry of amorphous silicon and amorphous silicon-germanium alloys”. Current opinion in Solid State&Material Science, 6, 455 (2002).Google Scholar
11. Budagian, B. G., Sherechenkov, A.A., Gorbulin, G.L., Chernomordic, V.D.. Physica B, 325, 394 (2003).Google Scholar
12. Kosarev, A., Torres, A., Hernandez, Y., Ambrosio, R., Zuniga, C., Felter, T.E., Asomoza, R.. Kudriavtsev, Y., Silva-Gonzalez, R., Gomez-Barojas, E., Ilinski, A., Abramov, A.S., J. Mater. Res., 21(1), 88104 (2006)Google Scholar
13. Poulsen, P. R., Wang, M., Xu, J., Li, W., Chen, K., Wang, G., Feng, D., J. Appl. Phys., 84(6), 3386 (1998)Google Scholar
14. Jordan, W. B., Carlson, E.D., Johnson, T.R., Wagner, S.. mat.Res.Symp.Proc., 762, A6.5.16 (2003)Google Scholar
15. Dalakos, G. T., Plawsky, J.L., Persans, P.D., Mat. Res. Soc. Symp. Proc. 762, A5.14, 16 (2003)Google Scholar
16. Oever, P. J. van den, Sanden, M.C. M.van de, Kessels, W.M.M., Mat. Res. Soc. Symp. Proc. 808, A9.35, 16 (2004)Google Scholar
17. Li, L., Li, Yuan-Min, Selvan, J.A. Anna, Delahoy, A.E., Levy, R.A., Mat. Res. Soc. Symp. Proc., 762, A5.15, 16 (2003)Google Scholar
18. Sanchez, L., Kosarev, A., Torres, A.. Felter, T.. Ilinskij, A., Mat. Res. Soc. Symp. Proc. 862, A18.5 (2005)Google Scholar
19. Birgin, E. G., Chambouleron, I., and Martinez, J.M., J. Computational Physics, 151, 862880 (1999)Google Scholar