Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-25T19:52:21.589Z Has data issue: false hasContentIssue false

The Effect of Hydrogen Dilution on Hot-Wire Thin-Film Transistors

Published online by Cambridge University Press:  10 February 2011

J.P. Conde
Affiliation:
Department of Materials Engineering, Instituto Superior Thcnico, Lisbon, Portugal
H. Silva
Affiliation:
Instituto de Engenharia de Sistemase Computadores (INESC), Lisbon, Portugal
V. Chu
Affiliation:
Instituto de Engenharia de Sistemase Computadores (INESC), Lisbon, Portugal
Get access

Abstract

Bottom-gate thin film transistors (TFT) were fabricated with amorphous and microcrystalline silicon active layers deposited by hot-wire (HW) chemical vapor deposition using different levels of hydrogen dilution. As the hydrogen dilution was increased above 80%, the active layer made a transition from amorphous to microcrystalline. This transition resulted in an increase of the TFT off-current and in an increase of the TFT subthreshold slope. The TFT on- current and the TFT mobility remained at levels comparable to those of the a-Si:H HW TFTs. A comparison is made between TFTs with amorphous and microcrystalline silicon active layers prepared both by rf glow discharge and HW. HW TFTs with an active layer consisting of a thin layer deposited with high hydrogen dilution underlying a thicker amorphous silicon layer are also compared to TFTs with an active layer of the same total active layer thickness consisting only of the high hydrogen dilution film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Street, R.A., Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, 1991.Google Scholar
2 Matsumura, H., J. Appl. Phys. 65, 4396 (1989).Google Scholar
3 Doyle, J., Robertson, R., Lin, G.H., He, M.Z., and Gallagher, A., J. Appl. Phys. 64, 3215 (1988).Google Scholar
4 Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
5 Meiling, H. and Schropp, R.E.I., Appl. Phys. Lett. 69, 1062 (1996).Google Scholar
6 Meiling, H., Schropp, R.E.I., Appl. Phys. Lett. 70, 2681 (1997)Google Scholar
7 Chu, V., Jarego, J., Silva, H., Silva, T., Reissner, M., Brogueira, P., Conde, J.P., Appl. Phys. Lett. 70, 2714 (1997).Google Scholar
8 Konuma, M., Curtins, H., Sarott, F.A., Veprek, S., Phil. Mag. B 55, 377 (1987).Google Scholar
9 Matsuda, A., J. Non-Cryst. Solids 59–60, 767 (1983).Google Scholar
10 Matsumura, H., Jpn. J. Appl. Phys. 30, L1522 (1991).Google Scholar
11 Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J., and Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
12 Brogueira, P., Conde, J.P., Arekat, S., and Chu, V., J. Appl. Phys. 79, 8748 (1996).Google Scholar
13 Conde, J.P., Brogueira, P., and Chu, V., Phil. Mag. B 76, 299 (1997).Google Scholar
14 Hsu, K.C., Chen, B.Y., Hsu, H.T., Wang, K.C., Yew, T.R., Hwang, H.L., Jpn. J. Appl. Phys. 33, 639 (1994).Google Scholar
15 Liang, C.W., Chiang, W.C., Feng, M.S., Jpn. J. Appl. Phys. 34, 5943 (1995).Google Scholar
16 Chang, C.Y., Lin, C.W., IEEE Electron Device Lett. 17, 572 (1996).Google Scholar
17 Jayatissa, A.H., Hatanaka, Y., Nakanishi, Y., Yamaguchi, T., Jpn. J. Appl. Phys. 35, 5687 (1996).Google Scholar
18 Froggatt, M.W.D., Milne, W.I., Powell, M.J., Mat. Res. Soc. Symp. Proc. 467, 893 (1997).Google Scholar