Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T17:45:51.805Z Has data issue: false hasContentIssue false

The Effect of H2 Dilution On Thin Film SiN Deposited by Hot Wire Cvd Using SiH4 and NH3 Gas Mixtures

Published online by Cambridge University Press:  17 March 2011

A. C. Dillon
Affiliation:
NREL, Golden CO 80401
L. Gedvillas
Affiliation:
NREL, Golden CO 80401
D. L. Williamson
Affiliation:
Colo. School of Mines, Golden CO 80401
J. Thiesen
Affiliation:
NREL, Golden CO 80401
J. D. Perkins
Affiliation:
NREL, Golden CO 80401
A. H. Mahan
Affiliation:
NREL, Golden CO 80401
Get access

Abstract

The structure of thin film SiN, deposited by the hot wire chemical vapor deposition (HWCVD) technique using SiH4 and NH3 gas mixtures, has been examined as a function of the amount of H2 dilution of the gas mixture. For NH3/SiH4 gas ratios > 0.5/1, all films are a-SiN:H. While H2 dilution does not change the basic film structure, in that the films are amorphous with all dilutions, H2 dilution does increase the efficiency of NH3 dissociation in the gas phase, and causes a further reduction in the already small amount of N-H bonding in a-SiN:H films deposited by HWCVD. For NH3/SiH4 gas ratios typically <0.5/1 and with high H2 dilution, the first deposition of µc-SiN is demonstrated. X-ray diffraction (XRD) measurements demonstrate that the structure of these films consists of silicon crystallites embedded in an a-SiN:H matrix. An upper limit for N incorporation with the preservation of microcrystallinity was found, beyond which the films again became amorphous. The existence of this limit is explained in terms of structural disorder in the a-SiN:H tissue brought about by N incorporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bustarret, E., Bensouda, M., Habrard, M. C., Bruyere, J. C., Polin, S., and Gujrathi, S. C., Phys. Rev. B 38, 8171 (1988).10.1103/PhysRevB.38.8171Google Scholar
2. Lucovsky, G., Yang, J., Chao, S. S., Tyler, J. E., and Czubatyj, W., Phys. Rev. B 28, 3234 (1983).Google Scholar
3. Takagi, T., Nakagawa, Y., Watabe, Y., Takechi, K., and Nishida, S., MRS Symp. Proc. 467, 483 (1997).10.1557/PROC-467-483Google Scholar
4. Matsumura, H., J. Appl. Phys. 66, 3612 (1989).Google Scholar
5. Matsumura, H., Proc. 1st Int'l. Conf. on Cat-CVD (Hot-Wire-CVD) process, Kanazawa, Japan, Nov. 2000 (pg. 1).Google Scholar
6. Rocheleau, R. E., Zhang, Z., Niles, D. W., and Mason, A., J. Appl. Phys. 72, 282 (1992).10.1063/1.352130Google Scholar
7. Kobayashi, I., Ogawa, T., and Hotta, S., Jpn. J. Appl. Phys. 31, 336 (1992).Google Scholar
8. Nelson, B. P., Xu, Y., Mahan, A. H., Williamson, D. L., and Crandall, R. S., MRS Symp. Proc. 609, 22.8.1 (2000).Google Scholar
9. Hasegawa, S., He, L., Amano, Y., and Inokuma, T., Phys. Rev. B 48, 5315 (1993).Google Scholar
10. Morimoto, A., Tsujimura, Y., Kumeda, M., and Shimizu, T., Jpn. J. Appl. Phys. 24, 1394 (1985).Google Scholar
11. Mahan, A. H., Williamson, D. L., and Furtak, T. E., MRS Symp. Proc. 467, 657 (1997).Google Scholar
12. Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 (1985).Google Scholar
13. Williamson, D. L., MRS Symp. Proc. 557, 251 (1999).Google Scholar
14. Kudayarova, V. K., Aivazov, A. A., Budaguan, B. G., and Filatova, I. V., MRS Symp. Proc. 284, 127 (1993).Google Scholar
15. Molenbroek, E. C., Mahan, A. H., and Gallagher, A. C., J. Appl. Phys. 82, 1909 (1997).Google Scholar
16. Lu, Z., Santos-Filho, P., Stevens, G., Williams, M. J., and Lucovsky, G., J. Vac. Sci. Tech. A 13, 607 (1995).Google Scholar
17. Doyle, J., Robertson, R., Lin, G. H., He, M. Z., and Gallagher, A. C., J. Appl. Phys. 64, 3215 (1988).Google Scholar
18.See, for example, fig. 1 of Williams, M. J., He, S. S., Cho, S. M., and Lucovsky, G., J. Vac. Sci. Tech. A 12, 1072 (1994).Google Scholar
19. Itoh, Y., Nozaki, T., Masui, T., and Abe, T., Appl. Phys. Lett. 47, 488 (1985).Google Scholar
20. Stein, H. J., Appl. Phys. Lett. 43, 296 (1983).Google Scholar
21. Mahan, A. H., Yang, J., Guha, S., and Williamson, D. L., Phys. Rev. B 61, 1677 (2000).Google Scholar
22. Ehara, T., Thin Solid Films 310, 322 (1997).Google Scholar
23. Sichanugrist, P., Yoshida, T., Ichikawa, Y., and Sakai, H., J. non-Cryst. Solids 164–166, 1081 (1993).10.1016/0022-3093(93)91186-7Google Scholar
24. Masuda, A., Itoh, K-i., Kumeda, M., and Shimizu, T., J. non-Cryst. Solids 198–200, 395 (1996).10.1016/0022-3093(95)00741-5Google Scholar