Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T22:27:53.378Z Has data issue: false hasContentIssue false

The Effect of Carbon Black and Colloidal Silica Fillers on the Fracture Toughness at Polymethylmethacrylate Interfaces

Published online by Cambridge University Press:  17 March 2011

Mordechai J. Bronner
Affiliation:
Rambam Mesivta High School, 15 Frost Lane, Lawrence NY, 11559
Anshul A. Shah
Affiliation:
Ward Melville High School, 380 Old Town Rd., East Setauket, NY 11733
Hyun-Joong Kim
Affiliation:
School of Biological Resources and Materials Engineering, Seoul National University, Suwon 441-744, Korea
Dennis G. Peiffer
Affiliation:
Exxon Mobil Research and Engineering, Annandale, NJ
Miriam Rafailovich
Affiliation:
Department of Materials Science & Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2275
Jonathan Sokolov
Affiliation:
Department of Materials Science & Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2275
Get access

Abstract

We have measured the fracture toughness of PMMA slabs with carbon black and colloidal silica fillers placed at the interface. The results show that the fracture toughness decreases linearly with carbon black concentration. The fracture toughness scales as annealing time, t1/2 indicating that it is diffusion limited. Addition of Colloidal Silica drastically reduces the fracture toughness regardless of concentration and annealing time. These results indicate that carbon black introduces physical cross links which decrease dynamics whereas colloidal silica produces permanent chemical cross links which prevent diffusion across the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Black, Carbon: What is it, and how is it made? http://www.cabot-corp.comGoogle Scholar
2) Zhang, Y., Ge, S., Tang, B., Koga, T., Rafailovich, M. H., Sokolov, J. C., Peiffer, D. G., Li, Z., Dias, A. J., McElrath, K. O., Lin, M.Y., Satija, S. K., Urquhart, S.G., Ade, H., and Nguyen, D. Macromolecules; 34 (2001) 7056.Google Scholar
3) Zheng, X.; Rafailovich, M. H.; Sokolov, J.; Strzhemechny, Y.; Schwarz, S. A.; Sauer, B.; Rubinstein, M. Phys. Rev. Lett., 79(1997) 241.Google Scholar
4) Kanninen, M. F., Int. J. Fract. 9 (1973) 83.Google Scholar
5) Bronner, M.J., Hu, X., Peiffer, D., Ge, S., M. Rafailovich. Sokolov, J., manuscript in preparationGoogle Scholar
6) Jud, J. etal Materials Science 16 (1981) 204 Google Scholar
7) Li, Z., Tolan, M., Höhr, T., Kharas, D., Qu, S., Sokolov, J., Rafailovich, M. H., Lorenz, H., Kotthaus, J. P., Wang, J., Sinha, S. K., and Gibaud, A. Macromolecules, 30 (1997) 8410 Google Scholar
8) Lin, Eric K., Kolb, Rainer, Satija, Sushil K., and Wu, Wen-li Macromolecules, 32 (1999) 3753 Google Scholar