Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T18:42:04.675Z Has data issue: false hasContentIssue false

Effect of Aluminum Addition on Ductility and Yield Strength of Fe3Al Alloys with 0.5 wt % TiB2*

Published online by Cambridge University Press:  28 February 2011

C. G. McKamey
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory Oak Ridge, TN 37831
J. A. Horton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory Oak Ridge, TN 37831
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory Oak Ridge, TN 37831
Get access

Abstract

Studies have been conducted of the mechanical properties of Fe3Al alloys containing 24 to 30 at.% Al, to which 0.5 wt% TiB2 was added for grain refinement. In tensile tests conducted at room temperature, it has been found that, as the aluminum content is increased, the yield strength decreases sharply from 760 to 310 MPa. The decrease in yield strength is accompanied by a four-fold increase in room-temperature ductility. Ordered iron aluminides (containing no disordered α phase) showed a clear increase in yield strength with temperature above 300°C. Their strength reached a maximum around 600°C, above which it decreased sharply. All these results will be discussed and correlated with stability of superlattice dislocations as a function of aluminum content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

supported by the U.S. Department of Energy, Morgantown Energy Technology Center, Surface Gasification Materials Program under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Horton, J. A., Liu, C. T., and Koch, C. C., in High-Temperature Alloys: Theory and Design, edited by Stiegler, J. O., (TMS-AIME, Warrendale, Ta., 1984), pp. 309321.Google Scholar
2. Marcinkowski, M. J., Taylor, M. E., and Kayser, F. X., J. Mater. Sci. 10, 406 (1975).Google Scholar
3. Marcinkowski, M. J. and Brown, N., Acta Metall. 9, 764 (1961).Google Scholar
4. Stoloff, N. S. and Davies, R. G., Acta Metall. 12, 473 (1964).CrossRefGoogle Scholar
5. Saburi, T., Yamauchi, I., and Nenno, S., J. Phys. Soc. Jpn. 32(3), 694 (1972).CrossRefGoogle Scholar
6. Ehlers, S. K. and Mendiratta, M. G., AFWAL-TR-82-4089, Wright-Patterson Air Force Base, Ohio, 1982.Google Scholar
7. Okamoto, H. and Beck, P. A., Metall. Trans. 2, 569 (1971).Google Scholar
8. Oki, K., Hasaka, M., and Eguchi, T., Jap. J. Appl. Phys. 12(10), 1522 (1973).Google Scholar
9. Morgand, P., Mouturat, P., and Sainfort, G., Acta Metall. 16, 867 (1968).Google Scholar
10. Liu, C. T. and Stiegler, J. O., Science 226, 636 (1984).Google Scholar
11. Umakoshi, Y., Yamaguchi, M., Namba, Y., and Murakami, K., Acta Metall. 24, 89 (1976).Google Scholar
12. Marcinkowski, M. J. and Miller, D. S., Philos. Mag. 6, 871 (1961).Google Scholar
13. Mendiratta, M. G., Ehlers, S. K., and Chatterjee, D. K., in Proceedings of National Bureau of Standards Symposium on Rapid Solidification Processing, Principles and Technologies IV, (National Bureau of Standards, Washington, D. C., 1983) pp. 240245.Google Scholar
14. McKamey, C. G., Liu, C. T., Cathcart, J. V., David, S. A., and Lee, E. H., ORNL/TM-10125, Oak Ridge National Laboratory, September 1986.Google Scholar
15. Kear, B. H. and Wilsdorf, H. G., Trans. AIME 224, 382 (1962).Google Scholar
16. Takeuchi, S. and Kuramoto, E., Acta Metall. 21, 415 (1973).Google Scholar
17. Stoloff, N. S. and Davies, R. G., Prog. Mater. Sci. 13, 1 (1966).Google Scholar
18. Leamy, H. J. and Kayser, F. X., Phys. Status Solidi 34, 765 (1969).Google Scholar
19. Crawford, R. C. and Ray, I. L. F., Philos. Mag. 35(3), 549 (1977).Google Scholar
20. Inouye, H., in Materials Research Society Symposia Proceedings, vol. 39, High Temperature Ordered Intermetallic Alloys, ed. Koch, C. C., Liu, C. T., and Stoloff, N. S., (Materials Research Society, Pittsburgh, 1985), pp. 255261.Google Scholar
21. Marcinkowski, M. J. and Brown, N., J. Appl. Phys. 33(2), 537 (1962).CrossRefGoogle Scholar
22. Weihs, T. P., Zinoviev, V., Viens, D. V., and Schulson, E. M., Acta Metall. (to be published).Google Scholar