Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-25T09:45:41.330Z Has data issue: false hasContentIssue false

ECR-MBE and GSMBE of Gallium nitride on Si(111)

Published online by Cambridge University Press:  21 February 2011

U. Rossner
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble - 17, Rue des Martyrs - 38054 Grenoble Cedex 9, France.
J.-L. Rouviere
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble - 17, Rue des Martyrs - 38054 Grenoble Cedex 9, France.
A. Bourret
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble - 17, Rue des Martyrs - 38054 Grenoble Cedex 9, France.
A. Barski
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble - 17, Rue des Martyrs - 38054 Grenoble Cedex 9, France.
Get access

Abstract

Electron Cyclotron Resonance Plasma Assisted Molecular Beam Epitaxy (ECR-MBE) and Gas Source Molecular Beam Epitaxy (GSMBE) have been used to grow hexagonal GaN on Si (111). In the ECR-MBE configuration high purity nitrogen has been used as nitrogen source. In GSMBE ammonia was supplied directly to the substrate to be thermally cracked in the presence of gallium.

By a combined application of in-situ reflection high-energy electron-diffraction (RHEED) and cross-sectional transmission electron microscopy (TEM) the growth mode and structure of GaN were determined. The growth mode strongly depends on growth conditions. Quasi two dimensional growth was observed in ECR-MBE configuration for a substrate temperature of 640°C while three dimensional growth occured in GSMBE configuration in the temperature range from 640 to 800°C.

Low temperature (9 K) photoluminescence spectra show that for samples grown by ECR-MBE and GSMBE a strong near band gap emission peak dominates while transitions due to deep level states are hardly detectable. The best optical results (the highest near band gap emission peak intensity) have been observed for samples grown by GSMBE at high temperature (800°C). This could be explained by the increase of grain dimensions (up to 0,3 – 0,5 μm) observed in samples grown by GSMBE at 800°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Koide, N., Kato, H., Sassa, M., Yamasaki, S., Manabe, K., Hashimoto, M., Amano, H., Hiramatsu, K. and Akasaki, I., J. Cryst. Growth, 115 (1991) 639.Google Scholar
2 Davis, R.F., Sitar, Z., Milliams, B.E., Kong, H.S., Kim, M.J., Palmour, J.W., Edmond, J.A., Ryn, J., Glass, J.T. and Carter, C.H., J. Mater. Sci. Eng., B1 (1988) 77.Google Scholar
3 Lei, T., Ludwig, K.F., Moustakas, T.D., J. Appl. Phys. 74 (7), 4430 (1993).Google Scholar
4 Watanabe, A., Takenchi, T., Hirosawa, K., Amano, H., Hiramatsu, K., Akasaki, I., J. Cryst. Growth 128, 391 (1993).Google Scholar
5 Stevens, K.S., Otani, A., Schvartzman, A.F., Beresford, R., J. Vac. Sci. Technol. B12 (2), 1186 (1994).Google Scholar
6 Meng, W.J., Perry, T.A., J. Appl. Phys. 76 (12), 7824 (1994).Google Scholar
7 Rössner, U., Brun-Le Cunff, D., Barski, A., Daudin, B., submitted to J. Vac. Sci. Technol. Google Scholar
8 Monemar, B., Phys. Rev. B, 10 (2), 676 (1974).Google Scholar
9 Lin, M.E., Sverdlov, B.N., Morkoç, H., Appl. Phys. Lett. 63 (26), 3625 (1993).Google Scholar
10 Rössner, U., PhD Thesis, Grenoble, 1995.Google Scholar
11 Oetchprohm, T., Hiramatsu, K., Amano, H., Akasaki, I., Appl. Phys. Lett. 61 (22), 2688 (1992).Google Scholar
12 Strite, S., Morkoç, H., J. Vac. Sci. Technol. B10 (4), 1237 (1992).Google Scholar
13 Yang, Z., Li, L.K., and Wang, W.I., Appl. Phys. Lett. 67 (12), 1686, (1995).Google Scholar
14 Powell, R.C., Lee, N.E., and Greene, J.E., Appl. Phys. Lett. 60 (20), 2505 (1992).Google Scholar