Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T22:41:41.959Z Has data issue: false hasContentIssue false

ECR-Assisted Reactive Magnetron Sputtering of InN

Published online by Cambridge University Press:  21 February 2011

W. A. Bryden
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland, 20723
S. A. Ecelberger
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland, 20723
M. E. Hawley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
T. J. Kistenmacher
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland, 20723
Get access

Abstract

The growth of high-quality thin films of the Group IIIA nitrides is exceedingly difficult given their propensity for nonstoichiometry and the lack of suitable substrates for either homoepitaxial or heteroepitaxial growth. A novel deposition technique, ultrahigh vacuum electron cyclotron resonance-assisted reactive magnetron sputtering, has been developed for the preparation of Group IIIA nitride thin films. Thus far, thin films of the semiconductor InN have been deposited on AlN-seeded (00.1) sapphire substrates, and the properties (structural, morphology, and electrical transport) of these films studied as a function of growth temperature. Comparison to InN thin films grown by conventional reactive magnetron sputtering shows enhanced Hall mobilities (from about 50 to over 100 cm2/V-sec), a decreased carrier concentration (by about a factor of 2–3), an increased optical bandgap, and an apparent reduction in homogeneous strain that is in part to be due to film relaxation induced by the ECR beam and in part to enhanced nitrogen content and more nearly stoichiometric films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example: Davis, R. F. in The Physics and Chemistry of Carbides, Nitrides and Borides, edited by Freer, R. (Kluwer Academic Publishers, Dordrecht, 1990), pp. 653669;Google Scholar
Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
2. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 415 (1988).Google Scholar
Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Wickenden, A. E., Proc. Mater. Res. Soc. 221, 167 (1991);Google Scholar
Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
4. Sitar, Z., Paisley, M. J., Smith, D. K. and Davis, R. F., Rev. Sci. Instrum. 61, 2407 (1990).Google Scholar
5. Lei, T., Fanciulli, M., Molnar, R. J., Moustakas, T. D., Graham, R. J., and Scanlon, J., Appl. Phys. Lett. 59, 944 (1991).Google Scholar
6. Strite, S., Ruan, J., Li, Z., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J. and Morkoç, H., J. Vac. Sci. Technol. B 9, 1924 (1991).Google Scholar
7. Lin, M. E., Xue, G., Zhou, G. L., Greene, J. E., and Morkoç, H., Appl. Phys. Lett. 63, 932 (1993).Google Scholar
8. Wang, Cheng and Davis, R. F., Appl. Phys. Lett. 63, 990 (1993).Google Scholar
9. Rowland, L. B., Kern, R. S., Tanaka, S., and Davis, R. F., Appl. Phys. Lett. 62, 3333 (1993).Google Scholar
10. Pearton, S. J., Abernathy, C. R., Wisk, P. W., Hobson, W. S., and Ren, F., Appl. Phys. Lett. 63, 1143 (1993).Google Scholar
11. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972);Google Scholar
Tansley, T. L. and Foley, C. P., Electr. Lett. 20, 1066 (1984);Google Scholar
Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 59, 1844 (1991);Google Scholar
Newman, N., Ross, J., and Rubin, M., Appl. Phys. Lett. 62, 1242 (1993).Google Scholar
12. Bryden, W. A., Ecelberger, S. A., and Kistenmacher, T. J., Mat. Res. Soc. Symp. Proc. 280, 509 (1993).Google Scholar
13. Bryden, W. A., Ecelberger, S. A., and Kistenmacher, T. J., Appl. Phys. Lett., submitted.Google Scholar
14. Kistenmacher, T. J., Ecelberger, S. A., and Bryden, W. A., J. Appl. Phys. 74, 1684 (1993).Google Scholar