Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T04:49:36.870Z Has data issue: false hasContentIssue false

Ebic evidence for Carbon-based Gettering in EFG Silicon

Published online by Cambridge University Press:  21 February 2011

R. Gleichmann
Affiliation:
AdW, Institut für Festkörperphysik und Elektronenmikroskopie, 4020 Halle, Weinberg 2, GDR.
J. P. Kalejs
Affiliation:
Mobil Solar Energy Corporation, 16 Hickory Drive, Waitham, Massachusetts 02254, USA.
D. G. Asta
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.
Get access

Abstract

The efficiency of solar cells fabricated from low-oxygen, high-carbon, EFG silicon ribbon can be improved by pre-annealing the ribbon at 1200°C prior to processing. TEM analysis shows that the increased efficiency is not related to a relaxation of the defect structure. Rather, EBIC investigations demonstrate a continuous reduction of the recombination activity of in-grown crystal defects (dislocations, grain boundaries) with increasing duration of the anneal. Since C is the only element in supersaturation at the annealing temperature, a model is suggested in which metallic contaminants are gettered at small carbon clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wald, F.V., in: Crystals, Growth Properties and Applications, Vol. 5, ed. Grabmaier, J. (Berlin: Springer Verlag; 1981), p.147.Google Scholar
2. Kalejs, J.P., Cretella, M.C., Wald, F.V., and Chalmers, B., in: Proc. Symp. Electronic and Optical Properties of Polycrystal and Impure Semiconductors and Novel Silicon Growth Methods, eds. Ravi, K.V. and O'Mara, B. (Electrochem. Soc. Pennington NJ, 1980, ECS-80-5) p.242.Google Scholar
3. Kalejs, J.P., Ladd, L.A., Appl. Phys. Letters, 45 (1984), 540.10.1063/1.95307CrossRefGoogle Scholar
4. Ast, D.G., Cunningham, B., Strunk, H.P., in: Grain Boundaries in Semiconductors, eds. Leamy, H.J., Pike, G.E., Seager, C.H. (North-Holland, New York; 1982), p.167.Google Scholar
5. Gleichmann, R., Cunningham, B., Ast, D.G., to be published in J. Appl. Phys.Google Scholar
6. Heydenreich, J., Blumtritt, H., Gleichmann, R., Johansen, H., Scanning Electron Microscopy 1981 (Part I), SEM, Inc., AMF O'Hare (Chicago), p.351Google Scholar
7. Kittler, M., Seifert, W., phys. stat. sol.(a), 66 (1981), 573.10.1002/pssa.2210660220CrossRefGoogle Scholar
8. Davis, J.R. Jr, Rohatgi, A., Hopkins, R.H., Blair, P.D., Rai-Choudhury, P., McCormick, J.R. and Mollenkopf, H.C., IEEE-ED 27 (1980) 677.10.1109/T-ED.1980.19922CrossRefGoogle Scholar
9. Schmidt, P.F., J.Electr.Chem.Soc. 128 (1981) 630.10.1149/1.2127472CrossRefGoogle Scholar
10. Voronkov, V.V., J. Crystal Growth, 59 (1982), 625.10.1016/0022-0248(82)90386-4CrossRefGoogle Scholar
11. Feng, S.Q. and Ast, D.G., unpublished data.Google Scholar
12. Kalejs, J.P., Ladd, L.A., and Gösele, U., Appl. Phys. Lett., 45 (1984), 268; see also L.A. Ladd, J.P. Kalejs and U. Gösele, in this Symposium Volume.10.1063/1.95167CrossRefGoogle Scholar