Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T07:50:37.657Z Has data issue: false hasContentIssue false

Dynamics of Ion Beam Stimulated Surface Mass Transport to Nanopores

Published online by Cambridge University Press:  01 February 2011

David P. Hoogerheide
Affiliation:
dphooger@fas.harvard.edu, Harvard University, Department of Physics and School of Engineering and Applied Sciences, Cambridge, MA, 02138, United States
Jene A. Golovchenko
Affiliation:
golovchenko@physics.harvard.edu, Harvard University, Physics, 17 Oxford Street, Cambridge, MA, 02138, United States
Get access

Abstract

We explore the ion beam-induced dynamics of the formation of large features at the edges of nanopores in freestanding silicon nitride membranes. The shape and size of these “nanovolcanoes”, together with the rate at which the nanopores open or close, are shown to be strongly influenced by sample temperature. Volcano formation and pore closing slow and stop at low temperatures and saturate at high temperatures. Nanopore volcano size and closing rates are dependent on initial pore size. We discuss both surface diffusion and viscous flow models in the context of these observed phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, J., Gershow, M., Stein, D., Brandin, E., and Golovchenko, J. A, Nat. Mater. 2, 611 (2003).Google Scholar
2. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J, and Golovchenko, J. A, Nature (London) 412, 166 (2001).Google Scholar
3. Gnaser, H., Ion Irradiation of Solid Surfaces (Springer, Berlin, 1999).Google Scholar
4. Makeev, M. A and Barabási, A.-L., Appl. Phys. Lett. 71, 2800 (1997).Google Scholar
5. Brongersma, M. L, Snoeks, E., Dillen, T. van, and Polman, A., J. Appl. Phys. 88, 59 (2000).Google Scholar
6. Snoeks, E., Weber, T., Cacciato, A., and Polman, A., J. Appl. Phys. 78, 4723 (1995).Google Scholar
7. Trinkhaus, H. and Ryazanov, A. I, Phys. Rev. Lett. 74, 5072 (1995).Google Scholar
8. Umbach, C. C, Headrick, R. L, and Chang, K.-C., Phys. Rev. Lett. 87, 246104 (2001).Google Scholar
9. Kim, Y.-R., Chen, P., Aziz, M. J, Branton, D., and Vlassak, J. J, J. Appl. Phys. 100, 104332 (2006).Google Scholar
10. Otani, K., Chen, X., Hutchinson, J. W, Chervinsky, J. F, and Aziz, M. J, J. Appl. Phys. 100, 023535 (2006).Google Scholar
11.“CNF - Chemical Vapor Deposition Capabilities” (http://www.cnf.cornell.edu/cnf_process_tf_cvd.html).Google Scholar
12. Stein, D. M, McMullan, C. J, Li, J., and Golovchenko, J. A, Rev. Sci. Instrum. 75, 900 (2004).Google Scholar
13. Horcas, I., Fernandez, R., Gomez, J. M-Rodriguez, Colchero, J., Gomez-Herrero, J., and Baro, A.M., Rev. Sci. Instrum. 78, 013705 (2007).Google Scholar
14. Mitsui, T., Stein, D., Kim, Y.-R., Hoogerheide, D., and Golovchenko, J. A, Phys. Rev. Lett. 96, 036102 (2006).Google Scholar
15. George, H. B, Ph. D. thesis, Harvard University, 2007.Google Scholar