Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-09T02:18:18.950Z Has data issue: false hasContentIssue false

Dynamics of Elementary Processes At Surfaces: Nitric Oxide Scattered From A Graphite Surface

Published online by Cambridge University Press:  26 February 2011

H. Vach
Affiliation:
Max-Planck-Institut für Quantenoptik, D8046 Garching and Sektion Physik der Universität MUnchen, Fed. Rep. of Germany
J. Häger
Affiliation:
Max-Planck-Institut für Quantenoptik, D8046 Garching and Sektion Physik der Universität MUnchen, Fed. Rep. of Germany
B. Simon
Affiliation:
Max-Planck-Institut für Quantenoptik, D8046 Garching and Sektion Physik der Universität MUnchen, Fed. Rep. of Germany
C. Flytzanis
Affiliation:
Max-Planck-Institut für Quantenoptik, D8046 Garching and Sektion Physik der Universität MUnchen, Fed. Rep. of Germany
H. Walther
Affiliation:
Max-Planck-Institut für Quantenoptik, D8046 Garching and Sektion Physik der Universität MUnchen, Fed. Rep. of Germany
Get access

Abstract

Molecular beam scattering from solid surfaces has long been recognized as a powerful means for investigation of gas-surface reaction dynamics. With the help of the recently developed laser-induced fluorescence and ionization techniques for state-selective detection, one can now measure the angular and velocity distributions of the scattered molecules together with their internal energy distributions. Such measurements fully describe the average energy and momentum exchanges between molecules and surfaces and give thus full information on the dynamics of the interaction. Recently, also the scattering of vibrationally excited NO molecules was investigated. The paper gives a review of new experiments with emphasis on the investigation of the scattering of NO molecules from a pyrographite surface. A simple model using transport properties of the solid is presented which accounts surprisingly well for the observed features.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brundle, C.R. and Morawitz, H., Vibrations at Surfaces, (Elsevier, Amsterdam, 1983).Google Scholar
2. Ibach, H. and Mills, D.L., Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, New York, 1982).Google Scholar
3. Madix, R.J. and Benziger, J., Annu. Rev. Phys. Chem. 29, 285 (1978).Google Scholar
4. Cardillo, M.J., Annu. Rev. Phys. Chem. 32, 331 (1981).Google Scholar
5. Muhlhausen, C.W., Serri, J.A., Tully, J.C., Becker, G.E., Cardillo, M.J., Isr. J. Chem. 22, 315 (1982).Google Scholar
6.(a) Frenkel, F., HAger, J., Krieger, W., Walther, H., Campbell, C.T., Ertl, G., Kuipers, H., Segner, J., Phys. Rev. Lett. 46, 152 (1981);CrossRefGoogle Scholar
(b) Frenkel, F., Hdger, J., Krieger, W., Walther, H., Ertl, G., Segner, J., Vielhaber, W., Chem. Phys. Lett. 90, 225 (1982);CrossRefGoogle Scholar
(c) Segner, J., Robota, H., Vielhaber, W., Ertl, G., Frenkel, F., Hdger, J., Krieger, W., Walther, H., Surf. Sci. 131, 273 (1983);Google Scholar
(d) Hdger, J., Shen, Y.R., Walther, H., Phys. Rev. A 31, 1962 (1985);CrossRefGoogle Scholar
(e) HAger, J. and Walther, H., J. Vac. Sci. Technol. B 3, 1490 (1985).Google Scholar
7.(a) Kleyn, A.W., Luntz, A.C., Auerbach, D.J., Phys. Rev. Lett. 47, 1169 (1981);CrossRefGoogle Scholar
(b) Kleyn, A.W., Luntz, A.C., Auerbach, D.J., Surf. Sci. 117, 33 (1982);Google Scholar
(c) Luntz, A.C., Kleyn, A.W., Auerbach, D.J., Phys. Rev. B 25, 4273 (1982);Google Scholar
(d) Hurst, J.E., Wharton, L., Janda, K.C., Auerbach, D.J., J. Chem. Phys. 78, 1559 (1983);CrossRefGoogle Scholar
(e) Rettner, C.T., Fabre, F., Kimman, J., Auerbach, D.J., Phys. Rev. Lett. 55, 1904 (1985).CrossRefGoogle Scholar
8.(a) McClelland, G.M., Kubiak, G.D., Rennagel, H.G., Zare, R.N., Phys. Rev. Lett. 46, 831 (1981);CrossRefGoogle Scholar
(b) Kubiak, G.D., Hurst, J.E. Jr, Rennagel, H.G., McClelland, G.M., Zare, R.N., J. Chem. Phys. 79, 5163 (1983).Google Scholar
9.(a) Asscher, M., Guthrie, W.L., Lin, T.H., Somorjai, G.A., Phys. Rev. Lett. 49, 76 (1982);Google Scholar
(b) Asscher, H., Guthrie, W.L., Lin, T.H., Somorjai, G.A., J. Chem. Phys. 78, 6992 (1983);Google Scholar
(c) Guthrie, W.L., Lin, T.H., Ceyer, S.T., Somorjai, G.A., J. Chem. Phys. 76, 6398 (1982).CrossRefGoogle Scholar
10.(a) Zacharias, H., Loy, M.M.T., Roland, P.A., Phys. Rev. Lett. 49, 1790 (1982);CrossRefGoogle Scholar
(b) Misewich, J., Zacharias, H., Loy, M.M.T., Phys. Rev. Lett. 55, 1919 (1985).Google Scholar
11. Hayden, J.S. and Diebold, G.J., J. Chem. Phys. 77, 4767 (1982).Google Scholar
12.(a) Hepburn, J.W., Northrup, F.J., Ogram, G.L., Polanyi, J.C., Williamson, J.H., Chem. Phys. Lett. 85, 127 (1982);Google Scholar
(b) Ettinger, D., Honma, K., Keil, M., and Polanyi, J.C., Chem. Phys. Lett. 87, 413 (1981).CrossRefGoogle Scholar
13. Cross, J.B. and Lurie, J.B., Chem. Phys. Lett. 100, 174 (1983).Google Scholar
14.(a) Mantell, D.A., Ryali, S.B., Haller, G.L., Fenn, J.B., J. Chem. Phys. 78, 4250 (1983);Google Scholar
(b) Mantell, D.A., Maa, Y.F., Ryaly, S.B., Haller, G.L., Fenn, J.B., J. Chem. Phys. 78, 6338 (1983).Google Scholar
15. Lucchese, R.R. and Tully, J.C., J. Chem. Phys. 80, 3451 (1984).Google Scholar
16. Muhlhausen, C.W., Williams, L.R., Tully, J.C., J. Chem. Phys. 83, 2594 (1985).Google Scholar
17. Wallis, R.F., Progr. Surf. Sci. 4, Ed. Davinson, S.G., 233, (1973)Google Scholar
18. Ashcroft, N.W. and Mermin, N.D., Solid State Physics, (Holt-Saunders, Tokio, 1981), chp. 25.Google Scholar
19. Kittel, C., Introduction to Solid State Physics, (John Wiley, N.Y., 1976), chps. 5 and 6.Google Scholar
20. Seilmeier, A. and Kaiser, W., (private communication)Google Scholar