Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T08:12:57.600Z Has data issue: false hasContentIssue false

Dynamic growth mechanism and interface structure of crystalline zirconia on silicon

Published online by Cambridge University Press:  11 February 2011

S J Wang
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore 117602
A C H Huan
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore 117602
C K Ong
Affiliation:
Department of Physics, National University of Singapore, Low Kent Ridge Road, Singapore 119260
Get access

Abstract

In present report, we have studied the initial stage of the growth of crystalline yttria-stabilized zirconia (YSZ) films on the natively oxidized Si (100) wafer by pulsed-laser deposition. X-ray photoelectron spectroscopy (XPS) and high-resoluti on transmission electron microscopy (HRTEM) show that, for the first few monolayers of crystalline YSZ deposited on Si (100), the dynamic processes appear to be the decomposition of SiO2 to SiO, the formation of ZrO2, and the desorption of SiO. The native amorphous silicon oxide layer is removed completely with the continued deposition of YSZ and the oxygen in this layer is used as oxygen source for forming stable crystalline oxide film. XPS depth profile and HRTEM investigation showed that the interface of crystalline YSZ film in contact with silicon was found to be atomically sharp and commensurately crystallized without an amorphous layer. The interface structure is suggested to have a sequence of-Si-O-Zr-O-. For the film with electrical equivalent oxide thickness 1.46 nm, the leakage current is about 1.1×10- A/cm2 at 1 V bias voltage. The hysteresis and interface state density in this film are measured to be less than 10 mV and 2.0×1011eV-1cm-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buchanan, D. A., IBM J. Res. Develop. 43, 245 (1999).Google Scholar
2. Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., and Timp, G., Nature 399, 758 (1999).Google Scholar
3. Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
4. Kingon, A. I., Maria, J. P., and Streiffer, S. K., Nature 406, 1032 (2000).Google Scholar
5. McKee, R. A., Walker, F. J., and Chisholm, M. F., Science 293, 468 (2001).Google Scholar
6. McKee, R. A., Walker, F. J., and Chisholm, M. F., Phys. Rev. Lett. 81, 3014 (1998).Google Scholar
7. Eisenbeiser, K., Finder, J. M., Yu, Z., Ramdani, J., Curless, J. A., Hallmark, J. A., Droopad, R., Ooms, W. J., Salem, L., Bradshaw, S., and Overgaard, C. D., Appl. Phys. Lett. 76, 1324 (2000).Google Scholar
8. Chambers, S. A., Liang, Y., Yu, Z., Droopad, R., Ramdani, J., and Eisenbeiser, K., Appl. Phys. Lett. 77, 1662 (2000).Google Scholar
9. Wang, S. J., Ong, C. K., Xu, S. Y., Chen, P., Tjiu, W. C., Chai, J. W., Huan, ACH, Yoo, W. J., Lim, J. S., Feng, W. and Choi, W. K., Appl. Phys. Lett. 78, 1604 (2001).Google Scholar
10. Wang, S. J., and Ong, C. K., Appl. Phys. Lett. 80, 2541 (2002).Google Scholar
11. Seiple, J. and Pelz, J. P., Phys. Rev. Lett. 73, 999 (1994).Google Scholar
12. Ross, F. M., Gibson, J. M. and Twesten, R. D., Surf. Sci. 310, 243 (1994).Google Scholar
13. Tromp, R., Rubloff, G. W., Balk, P., LeGoues, R. K., Phys. Rev. Lett. 55, 2332 (1985).Google Scholar
14. Chambers, J. J., and Parsons, G. N., Appl. Phys. Lett. 77, 2385 (2000).Google Scholar
15. Lucovsky, G., Rayner, G. B. Jr, Kang, D., Appel, G., Johnson, R. S., Zhang, Y., Sayers, D. E., Ade, H., and Whitten, J. L., Appl. Phys. Lett. 79, 1775 (2001)Google Scholar
16. Guittet, M. J., Crocombette, J. P., and Gautier-Soyer, M., Phys. Rev. B 63, 125117 (2001).Google Scholar
17. Knacke, O., Kubaschewski, O., Hesselmann, K. (eds.) Thermochemical properties of inorganic substances, (Berlin: Springer-Verlag, 2nd edn., 1991).Google Scholar
18. Chrisey, D. B. and Hubler, G. K. (eds.), Pulsed Laser Deposition of Thin Films (John Wiley & Sons, NY 1994).Google Scholar