Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-16T19:45:20.676Z Has data issue: false hasContentIssue false

DX Centers in AlGaAs and Pressurised GaAs

Published online by Cambridge University Press:  22 February 2011

S. Anand
Affiliation:
Tata Institute of Fundamental Research, Bombay, India
S. Subramanian
Affiliation:
Tata Institute of Fundamental Research, Bombay, India
B. M. Arora
Affiliation:
Tata Institute of Fundamental Research, Bombay, India
Y. C. Lu
Affiliation:
Max Planck Institut fur Festkorperschung, Stuttgart, Germany
E. Bauser
Affiliation:
Max Planck Institut fur Festkorperschung, Stuttgart, Germany
Get access

Abstract

In this paper, we present results of our investigations on some aspects of the DX centers. It is shown from the low temperature Hall mobility measurements that the charge state of the DX center is neutral supporting the positive U model for the DX center. Hall and DLTS measurements on Al-rich Al0.8Ga0.2As:Te sample show a reversal in the ordering of the energies of the hydrogenic and deep states of the Te donor, with the DX state lying higher than the X valley related effective mass state. Thermal emission properties of the pressure induced DX states of Ge and Se donors in neutron transmutation doped (NTD) GaAs are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mooney, P. M., J. Appl. Phys. 67, R1 (1990); Semicond. Sci. Technol. 6, B1 (1991).Google Scholar
2. Chadi, D. J. and Chang, K. J., Phys. Rev. Lett. 61, 873 (1988); Phys. Rev. B39, 10063 (1989).Google Scholar
3. Subramanian, S., Anand, S. and Arora, B. M., Solid State Comm. 76, 609 (1990).Google Scholar
4. Leith, G. A., S. Zukatynski and SpringThorpe, A. J., Appl. Phys. Lett. 60, 2517 (1992).Google Scholar
5. Chand, N., Henderson, T., Klein, J., Masselink, W. T., Fisher, R., Chang, Y. C., and Morkoc, H., Phys. Rev. B30, 4481 (1984).Google Scholar
6. Nelson, R. J., Appl. Phys. Lett. 31, 351 (1977).Google Scholar
7. Takimoto, N., J. Phys. Soc. Jpn. 14, 1142 (1959).Google Scholar
8. Hall, G. L., J. Phys. Chem. Solid.; 23, 1147 (1962).Google Scholar
9. Khachaturyan, K. A., Awschalom, D. W., Rozen, J. R., and Weber, E. R., Phys. Rev. Lett. 63, 1311 (1989).Google Scholar
10. Wolk, J. A., Kruger, M. B., Heyman, J. N., Walukiewicz, W., Jansen, R., and Hailer, E. E., Phys. Rev. Lett. 66, 774 (1991).Google Scholar
11. Fujisawa, T., Yoshino, J., and Kukimoto, H., Jpn. J. Appl. Phys. 29, L388 (1990).Google Scholar
12. SpringThorpe, A. J., king, F. D., and Becke, A., J. Electron. Mater. 4, 101 (1975).Google Scholar
13. Mizuta, M. and Mori, K., Phys. Rev. B37, 1043 (1988).Google Scholar
14. Dmochowski, J. E., Langer, J., Raczynska, J. and Jantsch, W., Phys. Rev. B38, 3276 (1988).Google Scholar
15. Mizuta, M., Tachikawa, M., Kukimoto, H. and Minomura, S., Jpn. J. AppL. Phys., 24, L143 (1985).Google Scholar
16. Fujisawa, T., Yoshino, J. and Kukimoto, H., J. Cryst. Growth. 98, 243 (1989).Google Scholar
17. Anand, S., Ph.D Thesis, University of Bombay, 1992 (unpublished).Google Scholar