Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-06T11:24:07.742Z Has data issue: false hasContentIssue false

Ductility and Fracture Behavior of Polycrystalline Ni3Al Alloys*

Published online by Cambridge University Press:  28 February 2011

C. T. Liu*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6117
Get access

Abstract

This paper provides a comprehensive review of the recent work on tensile ductility and fracture behavior of Ni3AI alloys tested at ambient and elevated temperatures. Polycrystalline Ni3Al is intrinsically brittle along grain boundaries, and the brittleness has been attributed to the large difference in valency, electronegativity, and atom size between nickel and aluminum atoms. Alloying with B, Mn, Fe, and Be significantly increases the ductility and reduces the propensity for intergranular fracture in Ni3 Al alloys. Boron is found to be most effective in improving room-temperature ductility of Ni3Al with <24.5 at. % Al.

The tensile ductility of Ni3Al alloys depends strongly on test environments at elevated temperatures, with much lower ductilities observed in air than in vacuum. The loss in ductility is accompanied by a change in fracture mode from transgranular to intergranular. This embrittlement is due to a dynamic effect involving simultaneously high localized stress, elevated temperature, and gaseous oxygen. The embrittlement can be alleviated by control of grain shape or alloying with chromium additions. All the results are discussed in terms of localized stress concentration and grain-boundary cohesive strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Department of Energy, under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

[1] Thornton, P. H., Davies, R. G., and Johnston, T. L., Metall. Trans. 1, 207 (1970).Google Scholar
[2] Flinn, P. A., Trans. TMS-AIME 218, 145 (1960).Google Scholar
[3] Davies, R. G. and Stoloff, N. S., Trans. TMS-AIME 233, 714 (1965).Google Scholar
[4] Aitken, E. A., Intermetallic Compounds, pp. 491515, Wiley, New York (1967).Google Scholar
[5] Liu, C. T. and Koch, C. C., Technical Aspects of Critical Materials Used by the Steel Industry, vol. 118, p. 42, National Bureau of Standards (1983).Google Scholar
[6] Grala, E. M., Mechanical Properties of Intermetallic Compounds, p. 358, Wiley, New York (1960).Google Scholar
[7] Moskovich, R., J. Mater. Sci. 13, 1901 (1978).Google Scholar
[8] Aoki, K. and Izumi, O., Trans. Japan Inst. Metals 19, 203 (1978).CrossRefGoogle Scholar
[9] Seybolt, A. V. and Westbrook, J. H., Acta Metall. 12, 449 (1964).Google Scholar
[10] Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 41, 170 (1977)Google Scholar
[11] Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
[12] Liu, C. T., White, C. L., Koch, C. C., and Lee, E. H., Proc. Symp. High Temperature Materials Chemistry II, p. 32, Electrochem. Soc. Inc. (1983).Google Scholar
[13] Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. A 15A, 399 (1984).Google Scholar
[14] Huang, S. C., Taub, A. I., and Chang, K. M., Acta Metal l. 32, 1703 (1984).Google Scholar
[15] Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213219(1985).Google Scholar
[16] Koch, C. C., Horton, J. A., Liu, C. T., Cavin, O. B., and Scarbrough, J. O., in Rapid Solidification Processing, Principles and Technologies IV, ed. Mehrabian, R., p. 264, National Bureau of Standards (1983).Google Scholar
[17] Takasugi, T. and Izumi, O., Acta Metall. 33, 12471258(1985).Google Scholar
[18] Takasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).CrossRefGoogle Scholar
[19] Hanada, S., Watanabe, S., and Izumi, O., J. Mater. Sci. 21, 203210(1985).Google Scholar
[20] Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scr. Metall. 19, 551556(1985).Google Scholar
[21] Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. A 16A, 441443 (1985).CrossRefGoogle Scholar
[22] White, C. L., Padgett, R. A., Liu, C. T., and Yalisove, S. M., Scr. Metall. 18, 14171420(1984).Google Scholar
[23] Choudhury, A., White, C. L., and Brooks, C. R., Scr. Metall. 20, 1061 (1986).CrossRefGoogle Scholar
[24] Takasugi, T., Masahashi, N., and Izumi, O., Scr. Metal l. 20, 1317 (1986).Google Scholar
25] Huang, S. C., Briant, C. L., Chang, K. M., Taub, A. I., Hall, E. L., J. Mater. Res. 1, 6067(1986).Google Scholar
[26] Chang, K. N., Taub, A. I., and Huang, S. C., Proc. MRS Symp. High-Temperature Ordered Intermetallic Alloys, vol. 39, p. 335, ed. Koch, C. C., Liu, C. T., and Stoloff, N. S., MRS Publication (1985).Google Scholar
[27] Taub, A. I., Huang, S. C., and Chang, K. M., Proc. MRS Symp. High-Temperature Ordered Intermetallic Alloys, vol. 39, p. 221, ed. Koch, C. C., Liu, C. T., and Stoloff, N. S., MRS Publication (1985).Google Scholar
[28] Taub, A. I., Chang, K. M., and Huang, S. C., Proc. ASM Int. Conf. on Rapidly Solidified Materials, San Diego, Calif., Feb. 3-5, 1986, p. 297, ed. Lee, P.W. and Carbonara, R. S., American Soc. for Metals, 1985.Google Scholar
[29] Liu, C. T. and White, C. L., Proc. MRS Symp. High-Temperature Ordered Intermetallic Alloys, vol. 39, p. 365, ed. Koch, C. C., Liu, C. T., and Stoloff, N. S., MRS Publication (1985).Google Scholar
[30] Liu, C. T., High-Temperature Alloys: Theory and Design, ed. Stiegler, J.O., pp. 289308, Am. Inst. Mech. Engrs. (1984).Google Scholar
[31] Vedula, K., private communication (1986).Google Scholar
[32] Liu, C. T., White, C. L., and Lee, E. H., Scr. Metall. 19, 12471250(1985).CrossRefGoogle Scholar
[33] Liu, C. T. and White, C. L., Acta Metall., accepted for publication (1986).Google Scholar
[34] Stein, O. F. and Heldt, L. A., Interfacial Segregation, ed. Johnson, W.C. and Blakely, J. N., pp. 239260, ASM, Metals Park, Ohio (1977).Google Scholar
[35] White, C. L. and Stein, D. F., Metall. Trans. A 9A, 13 (1978).Google Scholar
[36] Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. N., and Jackson, M. R., Scr. Metall. 20, 129134(1986).CrossRefGoogle Scholar
[37] Farkas, D., private communication (September 1985).Google Scholar
[38] Horton, J. A., Liu, C. T., and Santella, M. L., submitted for publication in Metall. Trans., 1986.Google Scholar
[39] Chang, K. M., Huang, S. C., and Taub, A. I., MRS Symp. Proc. 28, Elsevier Science Publishing, p. 401 (1984).Google Scholar
[40] Inouye, A., Masumoto, T., Tomioka, H., and Yano, N., Int. J. Rapid Solidification, vol. 1, pp. 115142, 1984-1985.Google Scholar
[41] Inouye, A., Tomioka, H., and Masumoto, T., Metall. Trans. A 14A, 1367 (1983).Google Scholar
[42] Huang, S. C., Hall, E. L., Chang, K. M., and Laforce, R. P., Metall. Trans. A 1685–1691 (1986).Google Scholar
[43] Rice, J. R., The Effect of Hydrogen on the Behavior of Metals, pp. 455465, AIME Publication, New York, New York (1976).Google Scholar
[44] Sickafus, K. and Sass, S. L., Scr. Metall. 18, 165168(1984).CrossRefGoogle Scholar
[45] Schulson, E. M., Weihs, T. P., Baker, I., Frost, H. J., and Horton, J. A., Acta Metall. 34, 13951399(1986).Google Scholar
[46] Huang, S. C., Chang, K. M., and Taub, A. I., Proc. ASM Int. Conf. on Rapidly Solidified Materials, San Diego, Calif., Feb. 3-5, 1986, p. 255, ed. Lee, P. W. and Carbonara, R. S., American Soc. for Metals (1985).Google Scholar
[47] DasGupta, A., Smedskjaer, L. C., Legnini, D. G., and Siegel, R. W., Mater. Letters 3, 457461(1985).Google Scholar
[48] Liu, C. T., unpublished results (1986).Google Scholar
[49] Liu, C. T., to be published in Symp. Micon 1986, AIME Publication (1987).Google Scholar
[50] Taub, A. I., Chang, K. M., and Liu, C. T., accepted for publication in Scripta Metallurgica (1986).Google Scholar
[51] Gaydosh, D. J., paper presented at the 115th TMS/AIME Annual Meeting at New Orleans, La., March 2-6, 1986.Google Scholar
[52] Liu, C. T. and Oliver, B. F., unpublished results (1986).Google Scholar
[53] Liu, C. T. and Sikka, V. K., J. Metals 38, 1921(1986).Google Scholar
[54] Takeyama, M. and Liu, C. T., unpublished results (1986).Google Scholar
[55] Weihs, T. P., Zimoviev, V., Viens, D. V., and Schulson, E. M., submitted for publication to Acta Metall (September 1986).Google Scholar