Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T12:07:45.435Z Has data issue: false hasContentIssue false

Dry Etching of InGaP and AlInP in CH4/H2/Ar

Published online by Cambridge University Press:  10 February 2011

J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
C. J. Santana
Affiliation:
University of Florida, Gainesville FL 32611
E. S. Lambers
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
Get access

Abstract

Electron Cyclotron Resonance (ECR) plasma etching with additional if-biasing produces etch rates ≥ 2,500Å/min for InGaP and AlInP in CH4/H2/Ar. These rates are an order of magnitude or much higher than for reactive ion etching conditions (RIE) carried out in the same reactor. N2 addition to CH4/H2/Ar can enhance the InGaP etch rates at low flow rates, while at higher concentrations it provides an etch-stop reaction. The InGaP and AtlnP etched under ECR conditions have somewhat rougher morphologies and different stoichiometries up to ˜200Å from the surface relative to the RIE samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuo, J. M., Thin Solid Films 231 158 (1993).Google Scholar
2. Lothian, J. R., Kuo, J. M., Ren, F. and Pearton, S. J., J. Electron. Mater. 21 441 (1992).Google Scholar
3. Ren, F., Mat. Res. Soc. Symp. Proc. 300 21 (1993).Google Scholar
4. Abernathy, C. R., J. Vac. Sci. Technol. A11 869 (1993).Google Scholar
5. Ren, F., Lothian, J. R., Pearton, S. J., Abernathy, C. R., Wisk, P. W., Fullowan, T. R., Tseng, B., Chu, S. N. G., , Y, Chen, K., Yang, C., Fu, T., Brozovich, R., Lin, H. H., Henning, C. L. and Henry, T., J. Vac. Sci. Technol. B12 2916 (1994).Google Scholar
6. Hobson, W. S., Mat. Res. Soc. Symp. Proc. 300 76 (1993).Google Scholar
7. Lee, J. W., Pearton, S. J., Abernathy, C. K., Hobson, W. S., Ren, F. and Wu, C. S., J. Electrochem. Soc. 142 L100 (1995).Google Scholar
8. Lee, J. W.. Pearton, S. J.. Abernathy, C. K., Hobson, W. S., Ren, F. and Wu, C. S., Solid State Electron. (in press).Google Scholar
9. Lothian, J. K-, Kuo, J. M., Hobson, W. S., Lane, E., Ren, F. and Pearton, S. J., J. Vac. Sci. Technol. B10 1061 (1992).Google Scholar
10. Shul, K. J., Schneider, K- P. and Constantine, C., Electron. Lett. 30 817 (1994).Google Scholar
11. Collot, P. and Gaonach, C., Semicond. Sci. Technol. 5 237 (1990).Google Scholar
12. Arnott, H. E. G., Glew, K- W., Schiavini, G., Righb, L. J. and Piccirillo, A., Appl. Phys. Lett. 62 3189 (1993).Google Scholar
13. Pearton, S. J.. Hobson, W. S., Baiocchi, F. A., Emerson, A. B. and Jones, K. S., J. Vac. Sci. Technol. B8 57 (1990).Google Scholar
14. Asmussen, J., J. Vac. Sci. Technol. A7 889 (1989).Google Scholar
15. Pearton, S. J. and Hobson, W. S., Appl. Phys. Lett. 56 2186 (1990).Google Scholar
16. Abernathy, C. R., Mat. Res. Soc. Symp. Proc. 300 3 (1993).Google Scholar
17. Pearton, S. J., Int. J. Mod. Phys. B8 1781 (1994).Google Scholar
18. Sendra, J. R. and Anquita, J.. Jap. J. Appl. Phys. 33 L390 (1994).Google Scholar
19. Pearton, S. J., Abernathy, C. K-, Ren, F. and Lothian, J. K, J. Appl. Phys. 76 1210 (1994).Google Scholar