Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T00:13:55.642Z Has data issue: false hasContentIssue false

Dry Etching of Copper at High Rates

Published online by Cambridge University Press:  25 February 2011

Janos Farkas
Affiliation:
Chemical Engineering Department, University of New Mexico, Albuquerque, NM 87131
Francois Rousseau
Affiliation:
Chemical Engineering Department, University of New Mexico, Albuquerque, NM 87131
Kai-Ming Chi
Affiliation:
Chemistry Department, University of New Mexico, Albuquerque, NM 87131
Toivo T. Kodas*
Affiliation:
Chemical Engineering Department, University of New Mexico, Albuquerque, NM 87131
Mark J. Hampden-Smith*
Affiliation:
Chemistry Department, University of New Mexico, Albuquerque, NM 87131
*
#Authors to whom correspondence should be addressed
#Authors to whom correspondence should be addressed
Get access

Abstract

Three new methods for dry etching of copper at temperatures below 200°C have been developed. The first relies on the formation of volatile CICu(PR3)2 species via reaction of PR3 with CuCI where R = ethyl, and butyl. The second relies on the reaction of Cu(hfac)2 and neutral ligands L such as butyne, pentyne or bistrimethylsilylacetylene to form (hfac)CuL. The last approach involves reaction of CuO with hexafluoroacetylacetone (hfacH) to form Cu(hfac)2 and water. These approaches have provided etch rates as high as 1 μm/min at 150°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pai, P.C., Ting, C.H., in VLSI V, (Mater. Res. Soc. Symp. Proc. 1990) p. 359.Google Scholar
2. Shin, H.K., Hampden-Smith, M.J., Kodas, T.T., and Duesler, E.N. in Chemical Perspectives of Electronic Materials II, (Mat. Res. Soc. Symp.Proc., 204, 1991) p. 61 Google Scholar
3. Shin, H.K., Chi, K.M., Hampden-Smith, M., Kodas, T.T., Farr, J., and Paffett, M., Angew. Chem., Advanced Materials, 3, 246, (1991).Google Scholar
4. Winters, H. F., J. Vac. Sci. Technol. A3, 786 (1985).Google Scholar
5. Sesselmann, W., Chuang, T. J., Surface Sci. 176, 32, (1986).Google Scholar
6. Sesselmann, W., Chuang, T. J., Surface Sci. 176, 67, (1986).CrossRefGoogle Scholar
7. Broydo, S., Solid State Technol., 26, 159, (1983).Google Scholar
8. Gulde, P., Scholtz, C., U.S. Patent No. 4 838 994, (June 13, 1989).Google Scholar
9. Schwartz, G.C., Schaible, P.M., J. Electrochem. Soc. 130, 1777 (1983).CrossRefGoogle Scholar
10. Schaible, P.M., Schwartz, G.C., U.S. Patent No. 4 352 716 (1982).Google Scholar
11. Howard, B. J., Wolterman, S.K., Yoo, W.J., Gittleman, B., and Steinbruchel, C.H. in Surface Chemistry and Beam-Solid Interactions. (Mat. Res. Soc. Symp. Proc., 201, 1991) p. 129.Google Scholar
12. Druschke, F., Kraus, G., Kuenzel, U., Ruth, W. D., Schaefer, R.; U.S. Patent No. 4 557 796, (December 10, 1985).Google Scholar
13. Bausmith, R. C., Cote, W. J., Cronin, J. C., Holland, K. L., Kaanta, C. W., Lee, P. P., Wright, T. M.; U.S. Patent No. 4 919 750 (April 24, 1990).Google Scholar
14.A. Norman, T. J., Muratore, B.A., Dyer, P.N., Roberts, D. A., Hochberg, A.K., J. de Physique, to be published (1992).Google Scholar
15. Rousseau, F., Jain, A., Hampden-Smith, M. J., Kodas, T. T., Chem. Mater., submitted for publication, 1992.Google Scholar