Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T20:22:04.234Z Has data issue: false hasContentIssue false

Double Sided Porous Silicon on Patterned Substrates for Thermal Effect Microsystems

Published online by Cambridge University Press:  17 March 2011

S. Périchon
Affiliation:
Laboratoire de Physique de la Matière, INSA de Lyon, Bât. 502, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
V. Lysenko
Affiliation:
Laboratoire de Physique de la Matière, INSA de Lyon, Bât. 502, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
B. Remaki
Affiliation:
Laboratoire de Physique de la Matière, INSA de Lyon, Bât. 502, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
D. Barbier
Affiliation:
Laboratoire de Physique de la Matière, INSA de Lyon, Bât. 502, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
Get access

Abstract

Application of porous silicon in thermal microsystem structures often requires the formation of deep localized porous silicon layers. The most commonly used method to prepare the porous layers is the dc anodic etching of monocrystalline silicon in a hydrofluoric acid (HF) based electrolyte. However inhomogeneity of the nanocrystallite size along the layer depth due to the decrease of HF concentration within the pores as well as the poor uniformity of the porous layer thickness limit the elaboration of deep porous layers. Thus we propose an original pulsed anodisation technique, using a double tank etching cell that allows localized porous silicon layers formation throughout the whole wafer thickness.

Furthermore a selective double sided pulsed anodisation of silicon was performed on patterned silicon substrates. Porous silicon is formed in pre-determined parts of the wafer using composite polysilicon-silicon nitride masking layers. Technological solutions to get rid of porous layer thickness inhomogeneity due to non uniform current density distribution are discussed. Finally a toric porous silicon layer, crossing the whole silicon wafer, surrounding a 20 mm diameter monocrystalline silicon cylinder was successfully achieved ensuring a new approach of thermal insulation for thermal effect microsystems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barret, S., Gapard, F., Herino, R., Ligeon, M., Muller, F., Ronga, I., Sens. and Act. A33, 19 (1992).Google Scholar
2. Steiner, P., Lang, W., Thin Solid Films, 255, 52 (1995).Google Scholar
3. Lang, W., Mat. Sc. And Eng. R17, No. 1, 1 (1996).Google Scholar
4. Canham, L. T., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
5. Bomchil, G., Halimoui, A., Herino, R., Microelectr. Eng., 8, 293 (1988).Google Scholar
6. Kato, Y., Ito, T., Hiraki, A., Appl. Surf. Sci. 41/42, 614 (1989).Google Scholar
7. Morel, M., LeBerre, M., Lysenko, V., Delhomme, G., Dittmar, A., Barbier, D., Mat. Res. Symp. Proc., 605, 281 (2000).Google Scholar
8. Kaltsas, G., Nassiopoulou, A. G., Sens. and Act. A65, 175 (1992).Google Scholar
9. Gesele, G., Linsmeier, J., Drach, V., Fricke, J., Arens-Fischer, R., J. Phys. D 30, 2911 (1997).Google Scholar
10. Drost, A., Steiner, P., Moser, H., Lang, W., Sensors and Materials 7, 11 (1995).Google Scholar
11. Obraztsov, A. N., Timoshenko, V. Yu., Okushi, H., Watanabe, H., Semiconductors 31, 534 (1997).Google Scholar
12. Benedetto, G., Boarino, L., Spagnolo, R., Appl. Phys. A 64, 155 (1997).Google Scholar
13. Périchon, S., Lysenko, V., Remaki, B., Champagnon, B., Barbier, D., J. of Appl. Phys., 86, 4700 (1999).Google Scholar
14. Lysenko, V., Périchon, S., Remaki, B., Champagnon, B., Barbier, D., J. of Appl. Phys., 86, 6841 (1999).Google Scholar
15. Allongue, P., Properties of Porous Silicon, edited by Canham, Leigh T., INSPEC publication, 3 (1997).Google Scholar
16. Campbell, I. H., Fauchet, P. M., Solid State Communications, 58, 739 (1986).Google Scholar
17. Billat, S., Thönissen, M., Arens-Fischer, R., Berger, M. G., Krüger, M., Lüth, H., Thin Solid Films, 297, 22 (1997).Google Scholar
18. Lysenko, V., Remaki, B., Barbier, D., Adv. Mater., 12, 516 (2000).Google Scholar
19. El-Bahar, A., Nemirovsky, Y., Appl. Phys. Lett., 77, 208 (2000).Google Scholar
20. Krüger, M., Arens-Fischer, R., Thönissen, M., Münder, H., Berger, M. G., Lüth, H., Hilbrich, S., Theiss, W., Thin Solid Films, 276, 257 (1996).Google Scholar
21. Dittmar, A., Delhomme, G., Roussel, B., Chatonnet, J., Patent US4,841,543, Probe for measuring the thermal conductivity of materials, (June 20, 1986).Google Scholar