Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-11T02:40:45.603Z Has data issue: false hasContentIssue false

Domain Structure and Transient Photoconductivity in Ordered Ga0.47In0.53As Epitaxial Films

Published online by Cambridge University Press:  10 February 2011

S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
R. K. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
D. J. Arent
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Get access

Abstract

We examine the influences of spontaneous atomic ordering and the associated subvariant domain structure on the transient photoconductivity in epitaxial Ga0.47In0.53As films grown by MOCVD on InP 2°-<110>. Ultra-high frequency photoconductivity decay is used to measure carrier lifetimes in ordered and disordered material following excitation with a YAG laser. Ordered material shows an extended lifetime of 18–186 gis that decreases with incident power. Strongly ordered material showed two CuPt-B subvariants in TEM diffraction patterns and images. Ordering in the first 0.5 μm of growth consists of a fine, interwoven structure with the subvariants closely associated. The subvariants then segregate into imperfectly ordered columnar superdomains that form a mosaic in the film plane with numerous order/order interfaces. In addition, order/disorder interfaces form within and adjacent to the partially ordered superdomains. We attribute the extended transient photoconductivity lifetime in ordered samples to trapping effects that result from the subvariant domain structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schneider, R. P. Jr., Jones, E. D., and Follstaedt, D., Appl. Phys. Lett. 65, 587 (1994).Google Scholar
2. Seong, T. Y., Norman, A. G., Booker, G. R., and Cullis, A. G., J. Appl. Phys. 75, 12 (1994).Google Scholar
3. Friedman, D. J., Zhu, J. G., Kibbler, A. E., Olson, J. M., Moreland, J., Appl. Phys. Lett. 63, 1774 (1993).Google Scholar
4. Baxter, C. S. and Stobbs, W. M., Phil. Mag. A, 69, 615 (1994).Google Scholar
5. Otsuka, N., Ihm, Y. E., Hirotsu, Y., J. Crystal Growth 95, 43 (1989).Google Scholar
6. Froyen, S. and Zunger, A., Phys. Rev. Lett., 66, 2132 (1991).Google Scholar
7. Suzuki, T. and Gomyo, A., J. Cryst. Growth, 111, 353 (1991).Google Scholar
8. Arent, D. J., Bertness, K. A., Bode, M., Kurtz, Sarah R., and Olson, J. M., Appl. Phys. Lett., 62, 1806 (1993)Google Scholar
9. Fouquet, J. E., Robbins, V. M., Rosner, J., and Blum, O., Appl. Phys. Lett. 57, 1566 (1990).Google Scholar
10. Delong, M. C., Ohlsen, W. D., Vioh, I., Taylor, P. C., and Olson, J. M., J. Appl. Phys. 70. 2780 (1991).Google Scholar
11. Ueda, O., Mat. Res. Soc. Symp. Proc. 417, 31 (1996).Google Scholar
12. Fujii, H., Ueno, Y., Gomyo, A., Endo, K., and Suzuki, T., Appl. Phys. Lett. 61, 737 (1992).Google Scholar
13. Ahrenkiel, R. K., Keyes, B. M., and Levi, D. L., Proceedings of the Photovoltaic Solar Energy Conference, H. S. Stephens & Associates, U.K. (1996), p. 914.Google Scholar
14. Ahrenkiel, R. K., Keyes, B. M., and Dunlavy, D. J., J. Appl. Phys. 70, 225 (1991).Google Scholar
15. Froyen, S., Zunger, A., and Mascarenhas, A., Appl. Phys. Lett. 68, 2852 (1996)Google Scholar
16. Leong, J.-K. and Williams, C. C., submitted to Appl. Phys. Lett. (1996).Google Scholar