Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T01:47:07.365Z Has data issue: false hasContentIssue false

Does The 1.25 eV Luminescence of Coherently Strained InGaAs Insertions in GaAs Originate from Quantum Dots?

Published online by Cambridge University Press:  10 February 2011

J.-L. Lazzari
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D- 10117 Berlin, Germany
R. Klann
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D- 10117 Berlin, Germany
A. Mazuelas
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D- 10117 Berlin, Germany
A. Trampert
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
M. Wassermeier
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D- 10117 Berlin, Germany
O. Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D- 10117 Berlin, Germany
K. H. Ploog
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D- 10117 Berlin, Germany
Get access

Abstract

We study the growth of InAs/AlxGa1-xAs/GaAs heterostructures as well as their structural and optical properties. Structurally coherent InAs islands with a narrow size distribution are found to be formed only in a very narrow range of InAs coverage. In striking contrast, the photoluminescence band in the 1.15–1.35 eV spectral range, which is commonly attributed to the emission from InAs quantum dots, is present for all of our structures, regardless the presence or absence of InAs islands and their strain state. Moreover, for constant InAs coverage this PL band follows not the Γ gap but the L gap of the AlxGa1-xAs barrier. This latter result is in disagreement with effective mass calculations for three-dimensionally confined excitons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ceschin, A. Marti and Massies, J., J. Crystal Growth 114, 693 (1991).Google Scholar
2. Grandjean, N. and Massies, J., J. Crystal Growth 134, 51 (1993).Google Scholar
3. Guha, S., Madhukar, A. and Rajkumar, K. C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
4. Trampert, A., Toumié, E. and Ploog, K. H., Appl. Phys. Lett. 66, 2265 (1995).Google Scholar
5. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. and Roux, G. Le, Appl. Phys. Lett. 47, 1099 (1985).Google Scholar
6. Xie, Q., Chen, P., Kalburge, A., Ramachandran, T. R.. Nayfonov, A., Konkar, A. and Madhukar, A., J. Crystal Growth 150, 357 (1995).Google Scholar
7. Marzin, J.-Y., Gérard, J.-M, Izraël, A., Barrier, D. and Bastard, G., Phys. Rev. Lett. 73, 716 (1994).Google Scholar
8. Wang, G., Fafard, S.. Leonard, D., Bowers, J. E., Merz, J. L. and Petroff, P. M., Appl. Phys. Lett. 64, 2815 (1994).Google Scholar
9. Ruvimov, S., Werner, P., Scheerschmidt, K., Gösele, U., Heydenreich, K., Richter, U., Ledentsov, N. N., Grundmann, M., Bimberg, D., Ustinov, V. M., Egorov, A. Yu., Kop'ev, P. S. and Alferov, Zh. I., Phys. Rev. B 51, 14766 (1994).Google Scholar
10. Leonard, D., Pond, K. and Petroff, P. M., Phys. Rev. B 50, 11687 (1994).Google Scholar
11. Moison, J. M., Houzay, F., Barthe, F., Leprince, L., André, E. and Vatel, O., Appl. Plys. Lett. 64, 196 (1994).Google Scholar
12. Gérard, J. M., Génin, J. B., Lefebvre, J., Moison, J. M., Lebouché, N. and Barthe, F., J. Crystal Growth 150, 351 (1995).Google Scholar
13. Brandt, O., Ilg, M. and Ploog, H. K., Microelectronics Journal (to be published).Google Scholar
14. Pavesi, L. and Guzzi, M., J. Appl. Phys. 75, 4779 (1994).Google Scholar