Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-11T14:32:03.088Z Has data issue: false hasContentIssue false

Dodecahedron- and Bowl-Shaped Structures C20

Published online by Cambridge University Press:  25 February 2011

Zdenék Slanina
Affiliation:
Department of Chemistry, The University of Arizona, Tucson, AZ 85721
Ludwik Adamowicz
Affiliation:
Department of Chemistry, The University of Arizona, Tucson, AZ 85721
Get access

Abstract

Purely carbonaceous aggregates C20 have been studied by the AM1 quantumchemical method. In addition to one dodecahedron-shaped structure possessing C1 symmetry another three-dimensional species is revealed, viz. a bowl-shaped structureof C5v symmetry (and also one two-dimensional and two one-dimensional species). Temperature dependence of the relative stabilities of both three-dimensional structures is evaluated, showing that in the relevant temperature region the fullerenic species is prevailing. However, in a very high temperature region a relative-stability interchange has been predicted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Curl, R. F. and Smalley, R. E., Science 242, 1017 (1988).Google Scholar
2. Kroto, H., Science 242, 1139 (1988).Google Scholar
3. Kroto, H. W., Allaf, A. W., and Balm, S. P., Chem. Rev. 91, 1213 (1991).Google Scholar
4. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
5. Kriitschmer, W., Lamb, L. D., Fostiropoulos, K. and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
6. Taylor, R., Hare, J. P., Abdul-Sada, A. K. and Kroto, H. W., J. Chem. Soc., Chem. Commun. 1423 (1990).Google Scholar
7. Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O'Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. K., Wilson, L. J., Curl, R. F. and Smalley, R. E., J. Phys. Chem. 94, 8634 (1990).Google Scholar
8. Slanina, Z., Adamowicz, L., Bakowies, D. and Thiel, W., Thermochim. Acta (in press).Google Scholar
9. Slanina, Z., Rudzifiski, J. M., Togasi, M. and Osawa, E., Thermochim. Acta 140, 87 (1989).Google Scholar
10. Slanina, Z., Rudzin'ski, J. M. and Osawa, E., Z. Phys. D 19, 431 (1991).Google Scholar
11. Bakowies, D. and Thiel, W., J. Am. Chem. Soc. 113, 3704 (1991).CrossRefGoogle Scholar
12. Bakowies, D. and Thiel, W., Chem. Phys. 151, 309 (1991).Google Scholar
13. Fowler, P. W., J. Chem. Soc., Faraday Trans. 87, 1945 (1991).Google Scholar
14. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. P., J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
15. Paquette, L. A., Chem. Rev. 89, 10511 (1989).Google Scholar
16. Barth, W. E. and Lawton, R. G., J. Am. Chem. Soc. 93, 1730 (1971).Google Scholar
17. Hoare, M. R., Advan. Chem. Phys. 40, 49 (1979).Google Scholar
18. Slanina, Z., Advan. Quantum Chem. 13, 89 (1981).Google Scholar
19. Martin, T. P., Phys. Rep. 95, 167 (1983).Google Scholar
20. Slanina, Z., Contemporary Theory of Chemical Isomerism, (D. Reidel, Dordrecht, 1986).Google Scholar
21. Slanina, Z., Int. Rev. Phys. Chem. 6, 409 (1987).Google Scholar
22. Drowart, J., Burns, R. P., DeMaria, G. and Inghram, M. G., J. Chem. Phys. 31, 1131 (1959).Google Scholar
23. Peters, G. and Jansen, M., Angew. Chem., Int. Ed. Engl. 31, 223 (1992).Google Scholar
24. Helden, G. v., Hsu, M.-T., Kemper, P. R. and Bowers, M. T., J. Chem. Phys. 95, 3835 (1991).Google Scholar
25. Diederich, F., Whetten, R. L., Thilgen, C., Ettl, R., Chao, I. and Alvarez, M. M., Science 254, 1768 (1991).Google Scholar