Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T06:37:51.531Z Has data issue: false hasContentIssue false

A DoD Perspective on Left Handed Negative Index Materials and Potential Applications

Published online by Cambridge University Press:  01 February 2011

Valerie Browning
Affiliation:
Valerie.Browning@darpa.mil, DARPA, X, 3701 N. Fairfax Dr., Arlington, VA, 22203-1714, United States, 703-696-2314, 703-248-1837
Minas H Tanielian
Affiliation:
Valerie.Browning@darpa.mil, DARPA, X, 3701 N. Fairfax Dr., Arlington, VA, 22203-1714, United States, 703-696-2314, 703-248-1837
Richard W. Ziolkowski
Affiliation:
Valerie.Browning@darpa.mil, DARPA, X, 3701 N. Fairfax Dr., Arlington, VA, 22203-1714, United States, 703-696-2314, 703-248-1837
Nader Engheta
Affiliation:
Valerie.Browning@darpa.mil, DARPA, X, 3701 N. Fairfax Dr., Arlington, VA, 22203-1714, United States, 703-696-2314, 703-248-1837
David R. Smith
Affiliation:
Valerie.Browning@darpa.mil, DARPA, X, 3701 N. Fairfax Dr., Arlington, VA, 22203-1714, United States, 703-696-2314, 703-248-1837
Get access

Abstract

In the quest for ever smaller, lighter weight, and conformal components and devices for radar and communication applications, researchers in the RF community have increasingly turned to artificially engineered, composite structures (or “metamaterials”) in order to exploit the extraordinary electromagnetic response these materials offer. One particularly promising class of metamaterials that has recently received a great deal of attention are “left-handed” or negative index materials. Because these metamaterials exhibit the unique ability to bend and focus light in ways no other conventional materials can, they hold great potential for enabling a number of innovative lens and antenna structures for a broad range of commercial and DoD relevant applications. Exploring the possible implementation of negative index materials for such applications will require significant enhancements in the properties of existing Negative Index Materials (NIM) (bandwidth, loss, operational frequency, etc.), as well as improved understanding of the physics of their electromagnetic transport properties. For this reason the Defense Advanced Research Project Agency (DARPA) has initiated a program that seeks to further develop and demonstrate NIM for future DoD missions including, but not limited to, the following: 1) lightweight, compact lenses with improved optics; 2) sub wavelength/high resolution imaging across the electromagnetic spectrum; 3) novel approaches to beam steering for radar, RF, and/or optical communications; and 4) novel approaches for integrating optics with semiconductor electronics. A brief overview of the salient properties of NIM will be presented as well as a general discussion of a few of their potential applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Veselago, V. G., Soviet Physiks USPEKI, 10, 509 (1968).Google Scholar
2. Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W.J., IEEE Trans. Micr. Theory and Techniques, 47, 2075 (1999).Google Scholar
3. Pendry, J. B., Holden, A. J., Stewart, W. J. and Youngs, I., Phys. Rev. Lett., 76, 4773 (1996).Google Scholar
4. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S., Phys. Rev. Lett., 84, 4184 (2000).Google Scholar
5. Smith, D. R. and Kroll, N., Phys. Rev. Lett., 85, 2933 (2000).Google Scholar
6. Shelby, R., Smith, D. R. and Schultz, S., Science, 292, 77 (2001).Google Scholar
7. Grbic, A. and Eleftheriades, G. V., J. Appl. Phys., 92, 5930 (2002).Google Scholar
8. Parazzoli, C. G., Greegor, R. B., Li, K., Koltenbah, B. E. C., Tanielian, M., Phys. Rev. Lett.,90, 107401 (2003).Google Scholar
9. McCall, M., Weiglhoffer, W. S. and Lakhtakia, A., Eur. J. Phys., 23, 353 (2002).Google Scholar
10. Pendry, J. B., Contemp. Phys., 45, 191 (2004).Google Scholar
11. Ramakrishna, S. A., Rep. Prog. Phys., 68, 449 (2005).Google Scholar
12. Luo, C. Y., Johnson, S. G., Joannopoulous, J. D. and Pendry, J. B., Optics Express, 11, 746 (2003).Google Scholar
13. Shvets, G., Phys. Rev. B, 67, 035109 (2003).Google Scholar
14. Greegor, R. B., Parazzoli, C. G., Nielsen, J. A., Thompson, M. A., Tanielian, M. H., Vier, D. C., Schultz, S., Smith, D. R. and Schurig, D., “Applications of Negative Index of Refraction Materials to Focusing and Beam Collimating Lenses for Microwaves,” Presented at the 2005 Allerton Antenna Applications Symposium, Monticello, Illinois, September 2005.Google Scholar
15. Greegor, R. B., Parazzoli, C. G., Nielsen, J. A., Thompson, M. A., Tanielian, M. H., Vier, D. C., Schultz, S., Smith, D. R and Schurig, D., IEE Proc. Microwaves, Antennas & Propagation, (2005) submitted.Google Scholar
16. Greegor, R. B., Parazzoli, C. G., Nielsen, J. A., Thompson, M. A. and Tanielian, M. H., Appl. Phys. Lett., 87, 091114 (2005).Google Scholar
17. Parazzoli, C. G., Koltenbah, B. E. C., Greegor, R. B., Lam, T. A., Tanielian, M. H., J. Opt. Soc. Am. B, 23(3), 439 (2005).Google Scholar
18. Engheta, N., IEEE Antennas and Wireless Propagation Letters, 1, 10 (2002).Google Scholar
19. Alu, A. and Engheta, N., Negative Refraction Metamaterials: Fundamental Principles and Applications, ed. Eleftheriades, G. V. and Balmain, K. G. (IEEE Press, John Wiley and Sons, 2005) pp. 339380.Google Scholar
20. Ziolkowski, R W. and Kipple, A., IEEE Trans. Antenna Propagat., 51 no. 10, 2626 (2003).Google Scholar
21. Ziolkowski, R. W. and Kipple, A. D., Phys. Rev. E, 72, 036602 (2005).Google Scholar
22. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Edition, (John Wiley & Sons, 1997) p. 136.Google Scholar
23. Ziolkowski, R. W. and Erentok, A., Proceedings of the Symposium on Antennas and Propagation ISAP2005, (Seoul, South Korea, August 3-5, 2005).Google Scholar
24. Ziolkowski, R. W. an Erentok, A., IEEE Trans. Antennas Propagat., (2006) in press.Google Scholar
25. Pendry, J. B., Phys. Rev. Lett., 85, 3966 (2000).Google Scholar
26. Shen, J. T. and Platzmann, P. M., Appl. Phys. Lett., 80, 3286 (2002).Google Scholar
27. Smith, D. R., Shurig, D., Rosenbluth, M., Schultz, S., Ramakrishna, S. A. and Pendry, J. B., Appl. Phys. Lett., 82, 1506 (2003).Google Scholar
28. Ye, Z., Phys. Rev. B, 67, 193106 (2003).Google Scholar
29. Merlin, R., Appl. Phys. Lett., 84, 1290 (2004).Google Scholar
30. Pendry, J. B., Phys. Rev. Lett., 91, 099701 (2003).Google Scholar
31. Ramakrishna, S. A., Pendry, J. B., Shurig, D., Smith, D. R. and Schultz, S., J. Mod. Opt., 49, 1747 (2002).Google Scholar
32. Fang, N. and Zhang, X., Appl. Phys. Lett., 82, 161 (2003).Google Scholar
33. Gomez-Santos, G., Phys. Rev. Lett., 90, 077401 (2003).Google Scholar
34. Ebbesen, T. W., Lezed, H. J., Ghaemi, H. F., Thio, T. and Wolff, P. A., Nature, 391, 667 (1998).Google Scholar
35. Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A. and Ebbesen, T., Phys. Rev. Lett., 90, 167401 (2003).Google Scholar
36. Podolskiy, V. A., Sarychev, A. K. and Shaleev, V. M., Optics Express, 11, 746 (2003).Google Scholar