Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T00:35:27.027Z Has data issue: false hasContentIssue false

Dissolution of UO2(s) in MgCl2-Brines Under Different Redox Conditions.

Published online by Cambridge University Press:  01 January 1992

Ignasi Casas
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, E-08028 Barcelona, Spain
J. Gimenez
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, E-08028 Barcelona, Spain
J. De Pablo
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, E-08028 Barcelona, Spain
M.E. Torrero
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, E-08028 Barcelona, Spain
Get access

Abstract

The dissolution of unirradiated UO2(s), with a particle size of 1 mm, has been studied in MgCl2 brines at 298 K under both reducing and oxidizing conditions. Results obtained under reducing conditions (H atmosphere in the presence of a palladium catalyst) show an initial increase of the total uranium concentration in solution and a subsequent decrease until equilibrium (or steady state) values are reached. Results obtained under oxidizing conditions (nominal oxygen partial pressures of 0.05, 0.21 and 1 atm) show two different trends. A relatively fast initial dissolution rate and, after approximately two or three weeks, a slower dissolution rate. X-Ray Photoelectron Spectroscopy (XPS) has shown that the UO2 surface composition changes during the experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, R. and Katayama, Y.B., Nucl. Chem. Waste Manag. 3, 83 (1982).Google Scholar
2. Brodda, B.-G. and Merz, E.R., Radiochim. Acta 44/45, 3 (1988).Google Scholar
3. Gray, W.J., in Scientific Basis for Nuclear Waste Management X, edited by Bates, J. K. and Seefeldt, W.B., (Mater. Res. Soc. Symp. Proc. 84, Pittsburgh, PA 1987) pp. 141152.Google Scholar
4. Grambow, B., Loida, A., Karsten, G., Müller, N., presented at the Spent Fuel Workshop'92, Visby, Sweden, 1992 (unpublished).Google Scholar
5. Shoesmith, D.W., (private communication).Google Scholar
6. Grambow, B. and MUller, R., in Scientific Basis for Nuclear Waste Management XIII, edited by Oversby, V.M. and Brown, P.W., (Mater. Res. Soc. Symp. Proc. 176, Pittsburgh, PA, 1990) pp. 229.Google Scholar
7. Robbins, J.C., Can. Inst. Min. Metall. Bull. 71, 61 (1978).Google Scholar
8. de Pablo, J., Duro, L., Giménez, J., Havel, J., Torrero, M.E. and Casas, I., Anal. Chim. Acta 264, 115 (1992).Google Scholar
9. Bruno, J., Casas, I. and Puigdomènech, I., Geochim. et Cosmochim. Acta 55, 647 (1991).Google Scholar
10. Casas, I., de Pablo, J., Giménez, J., Torrero, M.E. and Aguilar, M., Report No. ENRESA 05/92, 1991.Google Scholar
11. Barner, J.O., Gray, W.J., McVay, G.L. and Shade, J.W., Report No. PNL-4898-SRP UC-70, 1986.Google Scholar
12. Grandstaff, D.E., Econ. Geol. 71, 1493 (1976).Google Scholar
13. Shoesmith, D.W. and Sunder, S., J. Nucl. Mat. 190, 20 (1992).Google Scholar
14. Johnson, L.H., Shoesmith, D.W., Lunansky, G.E., Bailey, M.G. and Tremaine, P.R., Nuclear Technology 56, 238 (1982).Google Scholar
15. Torrero, M.E., Casas, I., Aguilar, M., de Pablo, J., Giménez, J. and Bruno, J., in Scientific Basis for Nuclear Waste Management XIV, edited by Abrajano, T. Jr. and Johnson, L.H., (Mat. Res. Soc. Symp. Proc. 212, Pittsburgh, PA, 1991) pp. 229234.Google Scholar