Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T01:06:20.166Z Has data issue: false hasContentIssue false

Direct Writing of Al on Si by UV Exposure Prior to Laser-Assisted CVD

Published online by Cambridge University Press:  28 February 2011

J. E. Bouree
Affiliation:
C.N.R.S., Laboratoire de Physique des Solides, F-92195 Meudon, France
J. Flicstein
Affiliation:
C.N.E.T., Laboratoire de Bagneux, F-92220 Bagneux, France
Y. I. Nissim
Affiliation:
C.N.E.T., Laboratoire de Bagneux, F-92220 Bagneux, France
Get access

Abstract

Photodissociation of trimethylaluminum molecules with a UV lamp is shown to be an effective technique for predisposing the irradiated silicon surface prior to subsequent aluminum film growth via visible laser induced pyrolysis. The Al deposits thus obtained are carbon contamination free. The UV exposure time needed for the onset of Al nucleation and growth is deduced from an in situ laser reflectometry technique. Direct laser writing is obtained using this two-step process and a microscopic analysis of the lines is made in correlation with the experimental procedure.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, D.J. and Tsao, J.Y., J. Vac.Sci. technol. B1, 969 (1983).Google Scholar
2. Bäuerle, D., in Laser Processing and Diagnostics, Springer Series in Chemical Phys. 39 (Springer, Berlin, 1984) p. 166.CrossRefGoogle Scholar
3. Chuang, T.J., J. Vac. Sci. Technol. 21, 798 (1982); Surf. Sci. Reports, 3, 1 (1983).Google Scholar
4. Pauleau, Y. and Auvert, G., in Physics and Fabrication of Microstructures and Microdevices, Springer Series in Physics 13 (Springer, Berlin, 1986) p. 109.CrossRefGoogle Scholar
5. Tsao, J.Y. and Ehrlich, D.J., Appl. Phys. Lett. 45, 617 (1984); in Laser Chemical Processing of Semiconductor Devices, MRS Symposium Extended Abstracts, (1984), p. 84.CrossRefGoogle Scholar
6. Osgood, R.M. and Gilgen, H.H., Ann. Rev. Mater. Sci. 15, 549 (1985).Google Scholar
7. Ehrlich, D.J., Osgood, R.M. and Deutsch, T.F., J. Vac. Sci. Technol. 21, 23 (1982).CrossRefGoogle Scholar
8. Bourée, J.E., Nissim, Y.I., Flicstein, J., Licoppe, C. and Druilhe, R., in Energy Beam-Solid Interactions and Transient Thermal Processing, MRS-Europe Symp. Proc. (1985), p. 119.Google Scholar
9. Bourée, J.E., Flicstein, J., Nissim, Y.I. and Licoppe, C., in Beam Induced Chemical Processes, MRS Symposium Extended Abstracts (1985), p. 71.Google Scholar
10. Leray, C., thesis, Lyon, 1984.Google Scholar
11. Rodot, M. and Bourée, J.E., in Le Vide, Les Couches Minces. 40, n° 227, 339 (1985).Google Scholar
12. Chakraverty, B.K. in Crystal Growth: an introduction (North-Holland, Amsterdam, 1973) p. 50.Google Scholar
13. Tsao, J.Y. and Ehrlich, D.J., J. Cryst. Growth 68, 176 (1984).CrossRefGoogle Scholar
14. Nissim, Y.I., Lietoila, A., Gold, R.B. and Gibbons, J.F., J. Appl. Phys. 51, 274 (1980).Google Scholar
15. Biswas, D.R., Ghosh, C. and Layman, R.L., J. Electrochem. Soc. 130, 234 (1983).CrossRefGoogle Scholar
16. Nitzan, A. and Brus, L.E., J. Chem. Phys. 75, 2205 (1981).CrossRefGoogle Scholar
17. Leung, P.T. and George, T.F., J. Chem. Phys. 85, 4729 (1986).CrossRefGoogle Scholar
18. Allen, S.D., Jan, R.Y., Edwards, R.H., Mazuk, S.M., Vernon, S.D., in VLSI Electronics Microstructure Science 7 (New York, Academic, 1983), p. 52.Google Scholar